Asmaa Maher , Saeed Mian Qaisar , N. Salankar , Feng Jiang , Ryszard Tadeusiewicz , Paweł Pławiak , Ahmed A. Abd El-Latif , Mohamed Hammad
{"title":"基于非线性特征提取和叠加集成学习的脑机脑电混合接口","authors":"Asmaa Maher , Saeed Mian Qaisar , N. Salankar , Feng Jiang , Ryszard Tadeusiewicz , Paweł Pławiak , Ahmed A. Abd El-Latif , Mohamed Hammad","doi":"10.1016/j.bbe.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Brain-computer interface (BCI) is used to enhance the human capabilities. The hybrid-BCI (hBCI) is a novel concept for subtly hybridizing multiple monitoring schemes to maximize the advantages of each while minimizing the drawbacks of individual methods. Recently, researchers have started focusing on the Electroencephalogram (EEG) and “Functional Near-Infrared Spectroscopy” (fNIRS) based hBCI. The main reason is due to the development of artificial intelligence (AI) algorithms such as machine learning approaches to better process the brain signals. An original EEG-fNIRS based hBCI system is devised by using the non-linear features mining and ensemble learning (EL) approach. We first diminish the noise and artifacts from the input EEG-fNIRS signals using digital filtering. After that, we use the signals for non-linear features mining. These features are “Fractal Dimension” (FD), “Higher Order Spectra” (HOS), “Recurrence Quantification Analysis” (RQA) features, and Entropy features. Onward, the Genetic Algorithm (GA) is employed for Features Selection (FS). Lastly, we employ a novel Machine Learning (ML) technique using several algorithms namely, the “Naïve Bayes” (NB), “Support Vector Machine” (SVM), “Random Forest” (RF), and “K-Nearest Neighbor” (KNN). These classifiers are combined as an ensemble for recognizing the intended brain activities. The applicability is tested by using a publicly available multi-subject and multiclass EEG-fNIRS dataset. Our method has reached the highest accuracy, F1-score, and sensitivity of 95.48%, 97.67% and 97.83% respectively.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 2","pages":"Pages 463-475"},"PeriodicalIF":5.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning\",\"authors\":\"Asmaa Maher , Saeed Mian Qaisar , N. Salankar , Feng Jiang , Ryszard Tadeusiewicz , Paweł Pławiak , Ahmed A. Abd El-Latif , Mohamed Hammad\",\"doi\":\"10.1016/j.bbe.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Brain-computer interface (BCI) is used to enhance the human capabilities. The hybrid-BCI (hBCI) is a novel concept for subtly hybridizing multiple monitoring schemes to maximize the advantages of each while minimizing the drawbacks of individual methods. Recently, researchers have started focusing on the Electroencephalogram (EEG) and “Functional Near-Infrared Spectroscopy” (fNIRS) based hBCI. The main reason is due to the development of artificial intelligence (AI) algorithms such as machine learning approaches to better process the brain signals. An original EEG-fNIRS based hBCI system is devised by using the non-linear features mining and ensemble learning (EL) approach. We first diminish the noise and artifacts from the input EEG-fNIRS signals using digital filtering. After that, we use the signals for non-linear features mining. These features are “Fractal Dimension” (FD), “Higher Order Spectra” (HOS), “Recurrence Quantification Analysis” (RQA) features, and Entropy features. Onward, the Genetic Algorithm (GA) is employed for Features Selection (FS). Lastly, we employ a novel Machine Learning (ML) technique using several algorithms namely, the “Naïve Bayes” (NB), “Support Vector Machine” (SVM), “Random Forest” (RF), and “K-Nearest Neighbor” (KNN). These classifiers are combined as an ensemble for recognizing the intended brain activities. The applicability is tested by using a publicly available multi-subject and multiclass EEG-fNIRS dataset. Our method has reached the highest accuracy, F1-score, and sensitivity of 95.48%, 97.67% and 97.83% respectively.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"43 2\",\"pages\":\"Pages 463-475\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000256\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000256","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning
The Brain-computer interface (BCI) is used to enhance the human capabilities. The hybrid-BCI (hBCI) is a novel concept for subtly hybridizing multiple monitoring schemes to maximize the advantages of each while minimizing the drawbacks of individual methods. Recently, researchers have started focusing on the Electroencephalogram (EEG) and “Functional Near-Infrared Spectroscopy” (fNIRS) based hBCI. The main reason is due to the development of artificial intelligence (AI) algorithms such as machine learning approaches to better process the brain signals. An original EEG-fNIRS based hBCI system is devised by using the non-linear features mining and ensemble learning (EL) approach. We first diminish the noise and artifacts from the input EEG-fNIRS signals using digital filtering. After that, we use the signals for non-linear features mining. These features are “Fractal Dimension” (FD), “Higher Order Spectra” (HOS), “Recurrence Quantification Analysis” (RQA) features, and Entropy features. Onward, the Genetic Algorithm (GA) is employed for Features Selection (FS). Lastly, we employ a novel Machine Learning (ML) technique using several algorithms namely, the “Naïve Bayes” (NB), “Support Vector Machine” (SVM), “Random Forest” (RF), and “K-Nearest Neighbor” (KNN). These classifiers are combined as an ensemble for recognizing the intended brain activities. The applicability is tested by using a publicly available multi-subject and multiclass EEG-fNIRS dataset. Our method has reached the highest accuracy, F1-score, and sensitivity of 95.48%, 97.67% and 97.83% respectively.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.