Minkowski 3-空间中的类时间W曲面

IF 1.2 Q2 MATHEMATICS, APPLIED
N. Alluhaibi, R. Abdel-Baky
{"title":"Minkowski 3-空间中的类时间W曲面","authors":"N. Alluhaibi, R. Abdel-Baky","doi":"10.1155/2022/7998748","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msup>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> be two timelike surfaces in Minkowski 3-space <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msubsup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula>. If there exists a spacelike (timelike) Darboux line congruence between each point of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msup>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>, then the surfaces are timelike Weingarten surfaces. It turns out their Tschebyscheff angles are solutions of the Sinh-Gordon equation, and the surfaces are related to each other by Backlund’s transformation. Finally, a method to construct new timelike Weingarten surface has been found.</jats:p>","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timelike <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>W</mi>\\n </math>-Surfaces in Minkowski 3-Space <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <msubsup>\\n <mrow>\\n \",\"authors\":\"N. Alluhaibi, R. Abdel-Baky\",\"doi\":\"10.1155/2022/7998748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msup>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> be two timelike surfaces in Minkowski 3-space <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msubsup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msubsup>\\n </math>\\n </jats:inline-formula>. If there exists a spacelike (timelike) Darboux line congruence between each point of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msup>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>, then the surfaces are timelike Weingarten surfaces. It turns out their Tschebyscheff angles are solutions of the Sinh-Gordon equation, and the surfaces are related to each other by Backlund’s transformation. Finally, a method to construct new timelike Weingarten surface has been found.</jats:p>\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7998748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/7998748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设M和M *是闵可夫斯基三维空间中的两个类时曲面是。如果M与M *的每一点之间存在一个类空(类时)达布线同余,那么这些面就是类时温加滕面。它们的切比舍夫角是Sinh-Gordon方程的解,并且曲面通过Backlund变换相互关联。最后,给出了一种构造新的类时Weingarten曲面的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timelike W -Surfaces in Minkowski 3-Space
Let M and M be two timelike surfaces in Minkowski 3-space 1 3 . If there exists a spacelike (timelike) Darboux line congruence between each point of M and M , then the surfaces are timelike Weingarten surfaces. It turns out their Tschebyscheff angles are solutions of the Sinh-Gordon equation, and the surfaces are related to each other by Backlund’s transformation. Finally, a method to construct new timelike Weingarten surface has been found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信