Priyanka Agarwal, Suheel K. Porwal, Jyoti Porwal, Raj K. Singh, Naveen Singhal
{"title":"化学官能化氧化石墨烯与N -苯基-对苯二胺作为润滑油的有效摩擦和流变改性剂","authors":"Priyanka Agarwal, Suheel K. Porwal, Jyoti Porwal, Raj K. Singh, Naveen Singhal","doi":"10.1002/ls.1636","DOIUrl":null,"url":null,"abstract":"<p>Nanoadditive with multifunctional properties holds commercial importance in the lubricant industry. Herein, GO-<i>N</i>-PPDA was synthesised as nanoadditive by functionalizing graphene oxide (GO) using <i>N</i>-phenyl-<i>p</i>-phenylenediamine and characterised by Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy analysis. The antioxidant behaviour of GO-<i>N</i>-PPDA was analysed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate. The nanoparticles dispersed mineral base oil (N-250) in 0.2%, 0.4%, 0.6% (w/v) concentrations were evaluated for tribological, rheological and thermophysical analysis by ASTM methods. The flow behaviour of the nanolubricant shows shear thickening behaviour with an increase in shear rate. In contrast, tribological results indicate a significant reduction in wear scar diameter and coefficient of friction to the base oil. Furthermore, GO-<i>N</i>-PPDA shows improved thermophysical properties compared with the mineral base oil. Thus, GO-<i>N</i>-PPDA shows multifunctional behaviour in terms of viscosity index, pour point, antioxidant activity, rheology and tribological properties.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"249-259"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically functionalized graphene oxide with N-phenyl-p-phenylenediamine as efficient tribo- and rheological modifier for lubricating oil\",\"authors\":\"Priyanka Agarwal, Suheel K. Porwal, Jyoti Porwal, Raj K. Singh, Naveen Singhal\",\"doi\":\"10.1002/ls.1636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoadditive with multifunctional properties holds commercial importance in the lubricant industry. Herein, GO-<i>N</i>-PPDA was synthesised as nanoadditive by functionalizing graphene oxide (GO) using <i>N</i>-phenyl-<i>p</i>-phenylenediamine and characterised by Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy analysis. The antioxidant behaviour of GO-<i>N</i>-PPDA was analysed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate. The nanoparticles dispersed mineral base oil (N-250) in 0.2%, 0.4%, 0.6% (w/v) concentrations were evaluated for tribological, rheological and thermophysical analysis by ASTM methods. The flow behaviour of the nanolubricant shows shear thickening behaviour with an increase in shear rate. In contrast, tribological results indicate a significant reduction in wear scar diameter and coefficient of friction to the base oil. Furthermore, GO-<i>N</i>-PPDA shows improved thermophysical properties compared with the mineral base oil. Thus, GO-<i>N</i>-PPDA shows multifunctional behaviour in terms of viscosity index, pour point, antioxidant activity, rheology and tribological properties.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"35 4\",\"pages\":\"249-259\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1636\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
纳米添加剂具有多功能特性,在润滑油工业中具有重要的商业价值。本文采用N -苯基-对苯二胺功能化氧化石墨烯(GO),合成了氧化石墨烯- N - PPDA纳米添加剂,并通过傅里叶变换红外光谱、X射线衍射分析、热重分析、扫描电镜和透射电镜分析对其进行了表征。用2,2 -二苯基- 1 -吡咯酰-水合肼分析了氧化石墨烯- N - PPDA的抗氧化行为。纳米颗粒分散的矿物基础油(N‐250)浓度分别为0.2%、0.4%和0.6% (w/v),通过ASTM方法进行摩擦学、流变学和热物理分析。随着剪切速率的增加,纳米润滑剂的流动表现出剪切增稠的特性。相比之下,摩擦学结果表明,磨损疤痕直径和基础油的摩擦系数显著减小。此外,与矿物基础油相比,GO‐N‐PPDA表现出更好的热物理性质。因此,GO‐N‐PPDA在粘度指数、倾点、抗氧化活性、流变学和摩擦学性能方面表现出多功能行为。
Chemically functionalized graphene oxide with N-phenyl-p-phenylenediamine as efficient tribo- and rheological modifier for lubricating oil
Nanoadditive with multifunctional properties holds commercial importance in the lubricant industry. Herein, GO-N-PPDA was synthesised as nanoadditive by functionalizing graphene oxide (GO) using N-phenyl-p-phenylenediamine and characterised by Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy analysis. The antioxidant behaviour of GO-N-PPDA was analysed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate. The nanoparticles dispersed mineral base oil (N-250) in 0.2%, 0.4%, 0.6% (w/v) concentrations were evaluated for tribological, rheological and thermophysical analysis by ASTM methods. The flow behaviour of the nanolubricant shows shear thickening behaviour with an increase in shear rate. In contrast, tribological results indicate a significant reduction in wear scar diameter and coefficient of friction to the base oil. Furthermore, GO-N-PPDA shows improved thermophysical properties compared with the mineral base oil. Thus, GO-N-PPDA shows multifunctional behaviour in terms of viscosity index, pour point, antioxidant activity, rheology and tribological properties.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.