Ignacio Barbero, Cristina Torrecillas, Raúl Páez, Gonçalo Prates, Manuel Berrocoso
{"title":"基于GNSS地面位移分析的Macaronesian运动学","authors":"Ignacio Barbero, Cristina Torrecillas, Raúl Páez, Gonçalo Prates, Manuel Berrocoso","doi":"10.1007/s11200-020-1122-x","DOIUrl":null,"url":null,"abstract":"<p>Macaronesia is a complex oceanic region spanning three tectonic plates in the northeast Atlantic ocean. It is composed of four archipelagos, widely distributed and limited to the east by the Iberian Peninsula and north-western coast of Africa. This study aims to clarify recent Macaronesian kinematics from 19 GNSS stations located on the four archipelagos and the Iberian and African coastlines. The analysis is based on nearly 15 years of common data acquisition and aimed to detect new effects of intraplate tectonics or similar local/regional events consistent with calculated ground displacements. Evaluating the GNSS stations residual velocities relative to those expected from the NNR-MORVEL56 model, higher residuals were found at continental coastal stations (Africa) than at oceanic ones (Canaries and Madeira). From the computed strain rate map, the possible existence of a shear zone connecting the Gloria and Transmoroccan fault systems, already mentioned by other authors, was depicted. Cluster statistical analysis of the horizontal residual velocities helped to identify tectonic boundaries in Macaronesia and four groups of analogous intraplate residual velocities within this region. Three of four groups were identified in the Azores, highlighting the African-Nubian-Eurasian diffuse plate boundary in this region. Furthermore, in the Canary Islands, two distinct kinematic behaviours were detected, possibly due to the activity along a previously detected tectonic fault between Tenerife and Gran Canaria, where some stations have similar intraplate residuals to those at Madeira and Cape Verde stations, while others have similar intraplate residuals to those of continental stations. Finally, all stations on oceanic crust, except Cape Verde, present recent ground subsidence which may be attributed to isostatic adjustment.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"65 1","pages":"15 - 35"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-020-1122-x","citationCount":"1","resultStr":"{\"title\":\"Recent Macaronesian kinematics from GNSS ground displacement analysis\",\"authors\":\"Ignacio Barbero, Cristina Torrecillas, Raúl Páez, Gonçalo Prates, Manuel Berrocoso\",\"doi\":\"10.1007/s11200-020-1122-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Macaronesia is a complex oceanic region spanning three tectonic plates in the northeast Atlantic ocean. It is composed of four archipelagos, widely distributed and limited to the east by the Iberian Peninsula and north-western coast of Africa. This study aims to clarify recent Macaronesian kinematics from 19 GNSS stations located on the four archipelagos and the Iberian and African coastlines. The analysis is based on nearly 15 years of common data acquisition and aimed to detect new effects of intraplate tectonics or similar local/regional events consistent with calculated ground displacements. Evaluating the GNSS stations residual velocities relative to those expected from the NNR-MORVEL56 model, higher residuals were found at continental coastal stations (Africa) than at oceanic ones (Canaries and Madeira). From the computed strain rate map, the possible existence of a shear zone connecting the Gloria and Transmoroccan fault systems, already mentioned by other authors, was depicted. Cluster statistical analysis of the horizontal residual velocities helped to identify tectonic boundaries in Macaronesia and four groups of analogous intraplate residual velocities within this region. Three of four groups were identified in the Azores, highlighting the African-Nubian-Eurasian diffuse plate boundary in this region. Furthermore, in the Canary Islands, two distinct kinematic behaviours were detected, possibly due to the activity along a previously detected tectonic fault between Tenerife and Gran Canaria, where some stations have similar intraplate residuals to those at Madeira and Cape Verde stations, while others have similar intraplate residuals to those of continental stations. Finally, all stations on oceanic crust, except Cape Verde, present recent ground subsidence which may be attributed to isostatic adjustment.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"65 1\",\"pages\":\"15 - 35\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-020-1122-x\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-020-1122-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-020-1122-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Recent Macaronesian kinematics from GNSS ground displacement analysis
Macaronesia is a complex oceanic region spanning three tectonic plates in the northeast Atlantic ocean. It is composed of four archipelagos, widely distributed and limited to the east by the Iberian Peninsula and north-western coast of Africa. This study aims to clarify recent Macaronesian kinematics from 19 GNSS stations located on the four archipelagos and the Iberian and African coastlines. The analysis is based on nearly 15 years of common data acquisition and aimed to detect new effects of intraplate tectonics or similar local/regional events consistent with calculated ground displacements. Evaluating the GNSS stations residual velocities relative to those expected from the NNR-MORVEL56 model, higher residuals were found at continental coastal stations (Africa) than at oceanic ones (Canaries and Madeira). From the computed strain rate map, the possible existence of a shear zone connecting the Gloria and Transmoroccan fault systems, already mentioned by other authors, was depicted. Cluster statistical analysis of the horizontal residual velocities helped to identify tectonic boundaries in Macaronesia and four groups of analogous intraplate residual velocities within this region. Three of four groups were identified in the Azores, highlighting the African-Nubian-Eurasian diffuse plate boundary in this region. Furthermore, in the Canary Islands, two distinct kinematic behaviours were detected, possibly due to the activity along a previously detected tectonic fault between Tenerife and Gran Canaria, where some stations have similar intraplate residuals to those at Madeira and Cape Verde stations, while others have similar intraplate residuals to those of continental stations. Finally, all stations on oceanic crust, except Cape Verde, present recent ground subsidence which may be attributed to isostatic adjustment.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.