固氮和重氮营养体研究进展

Wenli Sun, M. H. Shahrajabian, Qi Cheng
{"title":"固氮和重氮营养体研究进展","authors":"Wenli Sun, M. H. Shahrajabian, Qi Cheng","doi":"10.25083/rbl/26.4/2834-2845","DOIUrl":null,"url":null,"abstract":"Nitrogen fixation involves formation of ammonium from N2, which needs a high input of energy. Biological nitrogen fixation utilizes the enzyme nitrogenase and ATP to fix nitrogen. Nitrogenase contains a Fe-protein and a Mo-Fe-protein and other metal cofactors. Soil diazotrophs possess the function of fixing atmospheric N2 into biologically available ammonium in ecosystems. In Aechaea, nitrogen fixation has been reported in some methanogens such as Methanobacteriales, Methanococcales, and Methanosarcinales. Community structure and diversity of diazotrophic are correlated with soil pH. All known organisms which involve in nitrogen-fixing which are called diazatrophs are prokaryotes, and both bacterial and archaeal domains are responsible for that. Diazotrophs are categorized into two main groups namely: root-nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum, Cupriavidus, and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia. Two important parameters which may affect diazotroph communities are temperature and soil moisture in different seasons. To have sustainable agriculture, replacing expensive chemical nitrogen fertilizers with environmentally friendly ways is the most accepted practice.","PeriodicalId":21566,"journal":{"name":"Romanian Biotechnological Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Nitrogen Fixation and Diazotrophs – A Review\",\"authors\":\"Wenli Sun, M. H. Shahrajabian, Qi Cheng\",\"doi\":\"10.25083/rbl/26.4/2834-2845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen fixation involves formation of ammonium from N2, which needs a high input of energy. Biological nitrogen fixation utilizes the enzyme nitrogenase and ATP to fix nitrogen. Nitrogenase contains a Fe-protein and a Mo-Fe-protein and other metal cofactors. Soil diazotrophs possess the function of fixing atmospheric N2 into biologically available ammonium in ecosystems. In Aechaea, nitrogen fixation has been reported in some methanogens such as Methanobacteriales, Methanococcales, and Methanosarcinales. Community structure and diversity of diazotrophic are correlated with soil pH. All known organisms which involve in nitrogen-fixing which are called diazatrophs are prokaryotes, and both bacterial and archaeal domains are responsible for that. Diazotrophs are categorized into two main groups namely: root-nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum, Cupriavidus, and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia. Two important parameters which may affect diazotroph communities are temperature and soil moisture in different seasons. To have sustainable agriculture, replacing expensive chemical nitrogen fertilizers with environmentally friendly ways is the most accepted practice.\",\"PeriodicalId\":21566,\"journal\":{\"name\":\"Romanian Biotechnological Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Biotechnological Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25083/rbl/26.4/2834-2845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Biotechnological Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25083/rbl/26.4/2834-2845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

氮固定涉及由N2形成铵,这需要高能量输入。生物固氮利用固氮酶和ATP来固定氮。固氮酶含有一种Fe蛋白和一种Mo-Fe蛋白以及其他金属辅因子。土壤重氮菌在生态系统中具有将大气N2固定为生物有效铵的功能。在Aechaea,已经报道了一些产甲烷菌的固氮作用,如甲烷杆菌、甲烷球菌和甲烷球菌。重氮营养的群落结构和多样性与土壤pH值有关。所有已知的参与固氮的生物,即双氮营养体,都是原核生物,细菌和古菌结构域都对此负责。固氮菌可分为两大类,即:根瘤菌和促进植物生长的根际细菌。重氮营养菌包括自由活菌,如氮螺菌、三唑菌和一些硫酸盐还原菌,以及共生重氮营养杆菌,如根瘤菌和Frankia。影响重氮菌群落的两个重要参数是不同季节的温度和土壤湿度。为了实现可持续农业,用环保的方式取代昂贵的化学氮肥是最受欢迎的做法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen Fixation and Diazotrophs – A Review
Nitrogen fixation involves formation of ammonium from N2, which needs a high input of energy. Biological nitrogen fixation utilizes the enzyme nitrogenase and ATP to fix nitrogen. Nitrogenase contains a Fe-protein and a Mo-Fe-protein and other metal cofactors. Soil diazotrophs possess the function of fixing atmospheric N2 into biologically available ammonium in ecosystems. In Aechaea, nitrogen fixation has been reported in some methanogens such as Methanobacteriales, Methanococcales, and Methanosarcinales. Community structure and diversity of diazotrophic are correlated with soil pH. All known organisms which involve in nitrogen-fixing which are called diazatrophs are prokaryotes, and both bacterial and archaeal domains are responsible for that. Diazotrophs are categorized into two main groups namely: root-nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum, Cupriavidus, and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia. Two important parameters which may affect diazotroph communities are temperature and soil moisture in different seasons. To have sustainable agriculture, replacing expensive chemical nitrogen fertilizers with environmentally friendly ways is the most accepted practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Romanian Biotechnological Letters
Romanian Biotechnological Letters 生物-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信