Mundher Mohammed Taresh, N. Zhu, T. Ali, Asaad Shakir Hameed, Modhi Lafta Mutar
{"title":"使用卷积神经网络从x射线图像中自动检测COVID-19的迁移学习","authors":"Mundher Mohammed Taresh, N. Zhu, T. Ali, Asaad Shakir Hameed, Modhi Lafta Mutar","doi":"10.1101/2020.08.25.20182170","DOIUrl":null,"url":null,"abstract":"Novel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID- 19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images. Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was derived from several open sources of X-Rays, and the data available online. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PYCM was used to support the statistical parameters. The study revealed the superiority of Model vgg16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep Learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Transfer Learning to Detect COVID-19 Automatically from X-Ray Images Using Convolutional Neural Networks\",\"authors\":\"Mundher Mohammed Taresh, N. Zhu, T. Ali, Asaad Shakir Hameed, Modhi Lafta Mutar\",\"doi\":\"10.1101/2020.08.25.20182170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID- 19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images. Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was derived from several open sources of X-Rays, and the data available online. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PYCM was used to support the statistical parameters. The study revealed the superiority of Model vgg16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep Learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.08.25.20182170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.08.25.20182170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Transfer Learning to Detect COVID-19 Automatically from X-Ray Images Using Convolutional Neural Networks
Novel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID- 19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images. Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was derived from several open sources of X-Rays, and the data available online. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PYCM was used to support the statistical parameters. The study revealed the superiority of Model vgg16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep Learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics