无人自主地面混合动力车辆热管理系统:设计与控制

Q3 Engineering
Junkui, N. A. Allen, N. Huang, Shervin Shoai Naini, Richard S. Miller, Denise M. Rizzo, K. Sebeck, J. Wagner
{"title":"无人自主地面混合动力车辆热管理系统:设计与控制","authors":"Junkui, N. A. Allen, N. Huang, Shervin Shoai Naini, Richard S. Miller, Denise M. Rizzo, K. Sebeck, J. Wagner","doi":"10.1504/ijvp.2020.10031351","DOIUrl":null,"url":null,"abstract":"Modern autonomous hybrid vehicles are required to have longer range, better fuel economy and operate in diverse climate conditions which challenges cooling system design. This paper examines a heat pipe based thermal management system for the vehicle's powertrain components (electric motors, battery pack, and engine). Mathematical models were developed to describe the components' thermal behavior. Nonlinear controllers were designed to maintain the components' temperatures about their reference values by regulating multiple actuators for minimised temperature fluctuations and energy consumption. Numerical results considered various road grades and ambient conditions to demonstrate the thermal management system robustness. Simulation results show that the component temperatures were successfully maintained about their reference values with a small tracking error using the proposed thermal management system. The findings also show the ability to minimise energy through the integration of heat pipes and smart actuators.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unmanned autonomous ground hybrid vehicle thermal management system: design and control\",\"authors\":\"Junkui, N. A. Allen, N. Huang, Shervin Shoai Naini, Richard S. Miller, Denise M. Rizzo, K. Sebeck, J. Wagner\",\"doi\":\"10.1504/ijvp.2020.10031351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern autonomous hybrid vehicles are required to have longer range, better fuel economy and operate in diverse climate conditions which challenges cooling system design. This paper examines a heat pipe based thermal management system for the vehicle's powertrain components (electric motors, battery pack, and engine). Mathematical models were developed to describe the components' thermal behavior. Nonlinear controllers were designed to maintain the components' temperatures about their reference values by regulating multiple actuators for minimised temperature fluctuations and energy consumption. Numerical results considered various road grades and ambient conditions to demonstrate the thermal management system robustness. Simulation results show that the component temperatures were successfully maintained about their reference values with a small tracking error using the proposed thermal management system. The findings also show the ability to minimise energy through the integration of heat pipes and smart actuators.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvp.2020.10031351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2020.10031351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

现代自动混合动力汽车需要更长的行驶里程,更好的燃油经济性,并在多种气候条件下运行,这对冷却系统的设计提出了挑战。本文研究了一种基于热管的汽车动力总成部件(电动机、电池组和发动机)的热管理系统。建立了数学模型来描述构件的热行为。非线性控制器的设计是通过调节多个执行器来保持组件的温度在其参考值附近,以最小化温度波动和能量消耗。数值结果考虑了不同的道路等级和环境条件,以证明热管理系统的鲁棒性。仿真结果表明,所提出的热管理系统能够很好地将元件温度保持在参考值附近,并且跟踪误差很小。研究结果还表明,通过热管和智能执行器的集成,可以最大限度地减少能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unmanned autonomous ground hybrid vehicle thermal management system: design and control
Modern autonomous hybrid vehicles are required to have longer range, better fuel economy and operate in diverse climate conditions which challenges cooling system design. This paper examines a heat pipe based thermal management system for the vehicle's powertrain components (electric motors, battery pack, and engine). Mathematical models were developed to describe the components' thermal behavior. Nonlinear controllers were designed to maintain the components' temperatures about their reference values by regulating multiple actuators for minimised temperature fluctuations and energy consumption. Numerical results considered various road grades and ambient conditions to demonstrate the thermal management system robustness. Simulation results show that the component temperatures were successfully maintained about their reference values with a small tracking error using the proposed thermal management system. The findings also show the ability to minimise energy through the integration of heat pipes and smart actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信