Zhengguo Zhu, Weiliang Zhu, Guoteng Zhang, Teng Chen, Yibin Li, Xuewen Rong, Rui Song, Daoling Qin, Qiang Hua, Shugen Ma
{"title":"本体感觉电机驱动的两足机器人BRAVER的设计与控制","authors":"Zhengguo Zhu, Weiliang Zhu, Guoteng Zhang, Teng Chen, Yibin Li, Xuewen Rong, Rui Song, Daoling Qin, Qiang Hua, Shugen Ma","doi":"10.1007/s10514-023-10117-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the design and control of a high-speed running bipedal robot, BRAVER. The robot, which weighs 8.6 kg and is 0.36 m tall, has six active degrees, all of which are driven by custom back-driveable modular actuators, which enable high-bandwidth force control and proprioceptive torque feedback. We present the details of the hardware design, including the actuator, leg, foot, and onboard control systems, as well as the locomotion controller design for high dynamic tasks and improving robustness. We have demonstrated the performance of BRAVER using a series of experiments, including multi-terrains walking, up and down 15<span>\\(^{\\circ }\\)</span> slopes, pushing recovery, and running. The maximum running speed of BRAVER reaches 1.75 m/s.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 8","pages":"1229 - 1243"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and control of BRAVER: a bipedal robot actuated via proprioceptive electric motors\",\"authors\":\"Zhengguo Zhu, Weiliang Zhu, Guoteng Zhang, Teng Chen, Yibin Li, Xuewen Rong, Rui Song, Daoling Qin, Qiang Hua, Shugen Ma\",\"doi\":\"10.1007/s10514-023-10117-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the design and control of a high-speed running bipedal robot, BRAVER. The robot, which weighs 8.6 kg and is 0.36 m tall, has six active degrees, all of which are driven by custom back-driveable modular actuators, which enable high-bandwidth force control and proprioceptive torque feedback. We present the details of the hardware design, including the actuator, leg, foot, and onboard control systems, as well as the locomotion controller design for high dynamic tasks and improving robustness. We have demonstrated the performance of BRAVER using a series of experiments, including multi-terrains walking, up and down 15<span>\\\\(^{\\\\circ }\\\\)</span> slopes, pushing recovery, and running. The maximum running speed of BRAVER reaches 1.75 m/s.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"47 8\",\"pages\":\"1229 - 1243\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10117-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10117-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Design and control of BRAVER: a bipedal robot actuated via proprioceptive electric motors
This paper presents the design and control of a high-speed running bipedal robot, BRAVER. The robot, which weighs 8.6 kg and is 0.36 m tall, has six active degrees, all of which are driven by custom back-driveable modular actuators, which enable high-bandwidth force control and proprioceptive torque feedback. We present the details of the hardware design, including the actuator, leg, foot, and onboard control systems, as well as the locomotion controller design for high dynamic tasks and improving robustness. We have demonstrated the performance of BRAVER using a series of experiments, including multi-terrains walking, up and down 15\(^{\circ }\) slopes, pushing recovery, and running. The maximum running speed of BRAVER reaches 1.75 m/s.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.