基于图像的植物生长监测的深度学习研究进展

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Yin Tong, Tou-Hong Lee, Kin‐Sam Yen
{"title":"基于图像的植物生长监测的深度学习研究进展","authors":"Yin Tong, Tou-Hong Lee, Kin‐Sam Yen","doi":"10.46604/ijeti.2022.8865","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) approaches have received extensive attention in plant growth monitoring due to their ground-breaking performance in image classification; however, the approaches have yet to be fully explored. This review article, therefore, aims to provide a comprehensive overview of the work and the DL developments accomplished over the years. This work includes a brief introduction on plant growth monitoring and the image-based techniques used for phenotyping. The bottleneck in image analysis is discussed and the need of DL methods in plant growth monitoring is highlighted. A number of research works focused on DL based plant growth monitoring-related applications published since 2017 have been identified and included in this work for review. The results show that the advancement in DL approaches has driven plant growth monitoring towards more complicated schemes, from simple growth stages identification towards temporal growth information extraction. The challenges, such as resource-demanding data annotation, data-hungriness for training, and extraction of both spatial and temporal features simultaneously for accurate plant growth prediction, however, remain unsolved.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning for Image-Based Plant Growth Monitoring: A Review\",\"authors\":\"Yin Tong, Tou-Hong Lee, Kin‐Sam Yen\",\"doi\":\"10.46604/ijeti.2022.8865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) approaches have received extensive attention in plant growth monitoring due to their ground-breaking performance in image classification; however, the approaches have yet to be fully explored. This review article, therefore, aims to provide a comprehensive overview of the work and the DL developments accomplished over the years. This work includes a brief introduction on plant growth monitoring and the image-based techniques used for phenotyping. The bottleneck in image analysis is discussed and the need of DL methods in plant growth monitoring is highlighted. A number of research works focused on DL based plant growth monitoring-related applications published since 2017 have been identified and included in this work for review. The results show that the advancement in DL approaches has driven plant growth monitoring towards more complicated schemes, from simple growth stages identification towards temporal growth information extraction. The challenges, such as resource-demanding data annotation, data-hungriness for training, and extraction of both spatial and temporal features simultaneously for accurate plant growth prediction, however, remain unsolved.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2022.8865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2022.8865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

深度学习(DL)方法因其在图像分类方面的突破性表现而在植物生长监测中受到广泛关注;然而,这些方法尚未得到充分探索。因此,这篇综述文章旨在对多年来的工作和DL发展进行全面概述。这项工作包括简要介绍植物生长监测和用于表型的基于图像的技术。讨论了图像分析的瓶颈,强调了深度学习方法在植物生长监测中的必要性。自2017年以来,已经确定了一些专注于基于DL的植物生长监测相关应用的研究工作,并将其纳入本工作以供审查。结果表明,深度学习方法的进步推动了植物生长监测向更复杂的方案发展,从简单的生长阶段识别到时间生长信息提取。然而,资源要求高的数据标注、训练的数据饥渴、同时提取植物生长的时空特征以实现准确的植物生长预测等挑战仍未得到解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Image-Based Plant Growth Monitoring: A Review
Deep learning (DL) approaches have received extensive attention in plant growth monitoring due to their ground-breaking performance in image classification; however, the approaches have yet to be fully explored. This review article, therefore, aims to provide a comprehensive overview of the work and the DL developments accomplished over the years. This work includes a brief introduction on plant growth monitoring and the image-based techniques used for phenotyping. The bottleneck in image analysis is discussed and the need of DL methods in plant growth monitoring is highlighted. A number of research works focused on DL based plant growth monitoring-related applications published since 2017 have been identified and included in this work for review. The results show that the advancement in DL approaches has driven plant growth monitoring towards more complicated schemes, from simple growth stages identification towards temporal growth information extraction. The challenges, such as resource-demanding data annotation, data-hungriness for training, and extraction of both spatial and temporal features simultaneously for accurate plant growth prediction, however, remain unsolved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信