Ashton Curry-Hyde, Bei Jun Chen, J. D. Mills, M. Janitz
{"title":"微埃克森:转录组的新型调节因子","authors":"Ashton Curry-Hyde, Bei Jun Chen, J. D. Mills, M. Janitz","doi":"10.1080/23324015.2018.1491940","DOIUrl":null,"url":null,"abstract":"Abstract Alternative splicing of RNA is a fundamental post-transcriptional regulatory process that leads to a vast diversity of proteins being translated from a relatively small number of genomic loci. Microexons, a set of very small protein-coding sequences of 1-17 amino acids, have only recently been recognised as an important part of pre-mRNA processing. Recent studies have revealed that microexons can play important roles in various cellular functions, protein-protein interactions and have also been associated with various neurological diseases. This review provides an update on research covering the functional impact of microexons on the biology of a cell and disease, and the mechanisms by which their splicing is regulated. Finally, the current bioinformatics methods for detecting microexons are discussed.","PeriodicalId":91543,"journal":{"name":"Journal of human transcriptome","volume":"2 1","pages":"1 - 6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324015.2018.1491940","citationCount":"8","resultStr":"{\"title\":\"Microexons: novel regulators of the transcriptome\",\"authors\":\"Ashton Curry-Hyde, Bei Jun Chen, J. D. Mills, M. Janitz\",\"doi\":\"10.1080/23324015.2018.1491940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Alternative splicing of RNA is a fundamental post-transcriptional regulatory process that leads to a vast diversity of proteins being translated from a relatively small number of genomic loci. Microexons, a set of very small protein-coding sequences of 1-17 amino acids, have only recently been recognised as an important part of pre-mRNA processing. Recent studies have revealed that microexons can play important roles in various cellular functions, protein-protein interactions and have also been associated with various neurological diseases. This review provides an update on research covering the functional impact of microexons on the biology of a cell and disease, and the mechanisms by which their splicing is regulated. Finally, the current bioinformatics methods for detecting microexons are discussed.\",\"PeriodicalId\":91543,\"journal\":{\"name\":\"Journal of human transcriptome\",\"volume\":\"2 1\",\"pages\":\"1 - 6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324015.2018.1491940\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of human transcriptome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23324015.2018.1491940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of human transcriptome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23324015.2018.1491940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Alternative splicing of RNA is a fundamental post-transcriptional regulatory process that leads to a vast diversity of proteins being translated from a relatively small number of genomic loci. Microexons, a set of very small protein-coding sequences of 1-17 amino acids, have only recently been recognised as an important part of pre-mRNA processing. Recent studies have revealed that microexons can play important roles in various cellular functions, protein-protein interactions and have also been associated with various neurological diseases. This review provides an update on research covering the functional impact of microexons on the biology of a cell and disease, and the mechanisms by which their splicing is regulated. Finally, the current bioinformatics methods for detecting microexons are discussed.