一类一阶迭代微分方程的正周期解及其在造血模型中的应用

IF 1.4 4区 数学 Q1 MATHEMATICS
Ahlème Bouakkaz
{"title":"一类一阶迭代微分方程的正周期解及其在造血模型中的应用","authors":"Ahlème Bouakkaz","doi":"10.37193/cjm.2022.02.07","DOIUrl":null,"url":null,"abstract":"\"In this paper, a first-order iterative functional differential equation is investigated. With the help of the Schauder’s fixed point theorem, we established some sufficient criteria that ensure the existence of positive periodic solutions. In addition, an application to three hematopoiesis models is also provided to corroborate the effeteness of our main findings. These last ones substantially enrich and complement some earlier works.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"\\\"Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model\\\"\",\"authors\":\"Ahlème Bouakkaz\",\"doi\":\"10.37193/cjm.2022.02.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, a first-order iterative functional differential equation is investigated. With the help of the Schauder’s fixed point theorem, we established some sufficient criteria that ensure the existence of positive periodic solutions. In addition, an application to three hematopoiesis models is also provided to corroborate the effeteness of our main findings. These last ones substantially enrich and complement some earlier works.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.02.07\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.07","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究一类一阶迭代泛函微分方程。利用Schauder不动点定理,建立了保证周期正解存在的充分准则。此外,还提供了三种造血模型的应用来证实我们主要发现的有效性。这些最后的作品大大丰富和补充了一些早期的作品。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model"
"In this paper, a first-order iterative functional differential equation is investigated. With the help of the Schauder’s fixed point theorem, we established some sufficient criteria that ensure the existence of positive periodic solutions. In addition, an application to three hematopoiesis models is also provided to corroborate the effeteness of our main findings. These last ones substantially enrich and complement some earlier works."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信