闵可夫斯基逆在闵可夫斯基空间中的进一步表征与表示

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiale Gao, Qingwen Wang, Kezheng Zuo, Jiabao Wu
{"title":"闵可夫斯基逆在闵可夫斯基空间中的进一步表征与表示","authors":"Jiale Gao, Qingwen Wang, Kezheng Zuo, Jiabao Wu","doi":"10.3934/math.20231189","DOIUrl":null,"url":null,"abstract":"This paper serves to identify some new characterizations and representations of the Minkowski inverse in Minkowski space. First of all, a few representations of $ \\{1, 3^{\\mathfrak{m}}\\} $-, $ \\{1, 2, 3^{\\mathfrak{m}}\\} $-, $ \\{1, 4^{\\mathfrak{m}}\\} $- and $ \\{1, 2, 4^{\\mathfrak{m}}\\} $-inverses are given in order to represent the Minkowski inverse. Second, some famous characterizations of the Moore-Penrose inverse are extended to that of the Minkowski inverse. Third, using the Hartwig-Spindelböck decomposition, we present a representation of the Minkowski inverse. And, based on this result, an interesting characterization of the Minkowski inverse is showed by a rank equation. Finally, we obtain several new representations of the Minkowski inverse in a more general form, by which the Minkowski inverse of a class of block matrices is given.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further characterizations and representations of the Minkowski inverse in Minkowski space\",\"authors\":\"Jiale Gao, Qingwen Wang, Kezheng Zuo, Jiabao Wu\",\"doi\":\"10.3934/math.20231189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper serves to identify some new characterizations and representations of the Minkowski inverse in Minkowski space. First of all, a few representations of $ \\\\{1, 3^{\\\\mathfrak{m}}\\\\} $-, $ \\\\{1, 2, 3^{\\\\mathfrak{m}}\\\\} $-, $ \\\\{1, 4^{\\\\mathfrak{m}}\\\\} $- and $ \\\\{1, 2, 4^{\\\\mathfrak{m}}\\\\} $-inverses are given in order to represent the Minkowski inverse. Second, some famous characterizations of the Moore-Penrose inverse are extended to that of the Minkowski inverse. Third, using the Hartwig-Spindelböck decomposition, we present a representation of the Minkowski inverse. And, based on this result, an interesting characterization of the Minkowski inverse is showed by a rank equation. Finally, we obtain several new representations of the Minkowski inverse in a more general form, by which the Minkowski inverse of a class of block matrices is given.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231189\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Minkowski空间中Minkowsky逆的一些新的刻画和表示。首先,为了表示Minkowski逆,给出了$\{1,3^{\mathfrak{m}}\}$-,$\{1,2,3^{\ mathfrak{m}}\}$,$\{1,2,4^{\mathfrak{m}\}$和$\{1,24,^{\mathfrak{m}}}$逆的几个表示。其次,将Moore-Penrose逆的一些著名性质推广到Minkowski逆的性质。第三,使用Hartwig-Spindelböck分解,我们给出了Minkowski逆的一个表示。在此基础上,用秩方程给出了Minkowski逆的一个有趣的性质。最后,我们以更一般的形式得到了Minkowski逆的几个新表示,并由此给出了一类块矩阵的Minkowsky逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further characterizations and representations of the Minkowski inverse in Minkowski space
This paper serves to identify some new characterizations and representations of the Minkowski inverse in Minkowski space. First of all, a few representations of $ \{1, 3^{\mathfrak{m}}\} $-, $ \{1, 2, 3^{\mathfrak{m}}\} $-, $ \{1, 4^{\mathfrak{m}}\} $- and $ \{1, 2, 4^{\mathfrak{m}}\} $-inverses are given in order to represent the Minkowski inverse. Second, some famous characterizations of the Moore-Penrose inverse are extended to that of the Minkowski inverse. Third, using the Hartwig-Spindelböck decomposition, we present a representation of the Minkowski inverse. And, based on this result, an interesting characterization of the Minkowski inverse is showed by a rank equation. Finally, we obtain several new representations of the Minkowski inverse in a more general form, by which the Minkowski inverse of a class of block matrices is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信