Wael Mohamed Hamdy Khadr , Mohammed Magdy Hamed , Mohamed Salem Nashwan
{"title":"防止虹吸流的配水系统压力驱动分析","authors":"Wael Mohamed Hamdy Khadr , Mohammed Magdy Hamed , Mohamed Salem Nashwan","doi":"10.1016/j.jher.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of the water distribution network is complicated and requires several assumptions to simplify its problem definition. Demand Driven Analysis (DDA) is typically used to analyse the network assuming that all network nodes can deliver the required demand regardless of the available pressure. In the case of analysing an existing network under deficit condition such as pipe breakage or extra demand required for firefighting, assumptions used to simulate the network with DDA is not valid. Node Head Flow Relationship (NHFR) should be considered through Pressure Driven Analysis (PDA) to analyse the network. Most PDA methods assume that the networks are airtight which means that if the pressure at any demand node is negative, delivered demand will be equal to zero and the flow is permitted in the connected pipes (Siphonic flow). This assumption is hydraulically incorrect since the air is allowed to get into the connected pipes and prevent their flow leading to node isolation. In this paper, a new Pressure Driven Analysis to Prevent Siphonic Flow (PDA-SF) approach is proposed to analyze the network under deficit conditions and consider isolating the nodes that show available head less than node elevation. The PDA-SF was tested and compared to previous methods in four case studies under steady state analysis or extended period simulation. The case studies cover also different network conditions whether node isolation is needed or not. The PDA-SF was able to solve different networks where other methods failed to achieve the required demand or service pressure. The new PDA-SF method shall enable peers and modelers to better simulate and analysis water distribution networks.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"44 ","pages":"Pages 102-109"},"PeriodicalIF":2.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pressure Driven analysis of water distribution systems for preventing siphonic flow\",\"authors\":\"Wael Mohamed Hamdy Khadr , Mohammed Magdy Hamed , Mohamed Salem Nashwan\",\"doi\":\"10.1016/j.jher.2022.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The analysis of the water distribution network is complicated and requires several assumptions to simplify its problem definition. Demand Driven Analysis (DDA) is typically used to analyse the network assuming that all network nodes can deliver the required demand regardless of the available pressure. In the case of analysing an existing network under deficit condition such as pipe breakage or extra demand required for firefighting, assumptions used to simulate the network with DDA is not valid. Node Head Flow Relationship (NHFR) should be considered through Pressure Driven Analysis (PDA) to analyse the network. Most PDA methods assume that the networks are airtight which means that if the pressure at any demand node is negative, delivered demand will be equal to zero and the flow is permitted in the connected pipes (Siphonic flow). This assumption is hydraulically incorrect since the air is allowed to get into the connected pipes and prevent their flow leading to node isolation. In this paper, a new Pressure Driven Analysis to Prevent Siphonic Flow (PDA-SF) approach is proposed to analyze the network under deficit conditions and consider isolating the nodes that show available head less than node elevation. The PDA-SF was tested and compared to previous methods in four case studies under steady state analysis or extended period simulation. The case studies cover also different network conditions whether node isolation is needed or not. The PDA-SF was able to solve different networks where other methods failed to achieve the required demand or service pressure. The new PDA-SF method shall enable peers and modelers to better simulate and analysis water distribution networks.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"44 \",\"pages\":\"Pages 102-109\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644322000508\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000508","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Pressure Driven analysis of water distribution systems for preventing siphonic flow
The analysis of the water distribution network is complicated and requires several assumptions to simplify its problem definition. Demand Driven Analysis (DDA) is typically used to analyse the network assuming that all network nodes can deliver the required demand regardless of the available pressure. In the case of analysing an existing network under deficit condition such as pipe breakage or extra demand required for firefighting, assumptions used to simulate the network with DDA is not valid. Node Head Flow Relationship (NHFR) should be considered through Pressure Driven Analysis (PDA) to analyse the network. Most PDA methods assume that the networks are airtight which means that if the pressure at any demand node is negative, delivered demand will be equal to zero and the flow is permitted in the connected pipes (Siphonic flow). This assumption is hydraulically incorrect since the air is allowed to get into the connected pipes and prevent their flow leading to node isolation. In this paper, a new Pressure Driven Analysis to Prevent Siphonic Flow (PDA-SF) approach is proposed to analyze the network under deficit conditions and consider isolating the nodes that show available head less than node elevation. The PDA-SF was tested and compared to previous methods in four case studies under steady state analysis or extended period simulation. The case studies cover also different network conditions whether node isolation is needed or not. The PDA-SF was able to solve different networks where other methods failed to achieve the required demand or service pressure. The new PDA-SF method shall enable peers and modelers to better simulate and analysis water distribution networks.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.