{"title":"塔巴电厂马兹努煤矿露天与地下开采最佳界面的确定","authors":"A. S. Khaboushan, M. Osanloo","doi":"10.22044/JME.2020.9819.1904","DOIUrl":null,"url":null,"abstract":"Due to the gradual deepening of the Mazinu coal seams from the ground surface, both the open-pit (OP) and underground (UG) mining methods can be applied for extracting them. Thus, it is a necessity to determine the interface of these mining methods optimally. The present paper aims to determine this interface by generating different scenarios using the OP phases and their relative underground stopes, and comparing them with each other. In this regard, an economic block model is created based on the calorific value of the coal portions involved by each block along with the required economic and technical parameters. Then using the Lerchs-Grossman algorithm, the OP phases are created. Proportional to each phase, the production scheduling of underground stopes is executed. Finally, in order to opt the best scenario, the net present value of the whole project (OP & UG) achieved from different scenarios are compared with each other. The results obtained indicate that the optimum interface of the OP and UG mining activities correspond to the ultimate OP limit with a maximum depth of 200 m from the ground surface.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of an optimum interface between open pit and underground mining activities in Mazinu coal mine of Tabas power plant\",\"authors\":\"A. S. Khaboushan, M. Osanloo\",\"doi\":\"10.22044/JME.2020.9819.1904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the gradual deepening of the Mazinu coal seams from the ground surface, both the open-pit (OP) and underground (UG) mining methods can be applied for extracting them. Thus, it is a necessity to determine the interface of these mining methods optimally. The present paper aims to determine this interface by generating different scenarios using the OP phases and their relative underground stopes, and comparing them with each other. In this regard, an economic block model is created based on the calorific value of the coal portions involved by each block along with the required economic and technical parameters. Then using the Lerchs-Grossman algorithm, the OP phases are created. Proportional to each phase, the production scheduling of underground stopes is executed. Finally, in order to opt the best scenario, the net present value of the whole project (OP & UG) achieved from different scenarios are compared with each other. The results obtained indicate that the optimum interface of the OP and UG mining activities correspond to the ultimate OP limit with a maximum depth of 200 m from the ground surface.\",\"PeriodicalId\":45259,\"journal\":{\"name\":\"Journal of Mining and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JME.2020.9819.1904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2020.9819.1904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Determination of an optimum interface between open pit and underground mining activities in Mazinu coal mine of Tabas power plant
Due to the gradual deepening of the Mazinu coal seams from the ground surface, both the open-pit (OP) and underground (UG) mining methods can be applied for extracting them. Thus, it is a necessity to determine the interface of these mining methods optimally. The present paper aims to determine this interface by generating different scenarios using the OP phases and their relative underground stopes, and comparing them with each other. In this regard, an economic block model is created based on the calorific value of the coal portions involved by each block along with the required economic and technical parameters. Then using the Lerchs-Grossman algorithm, the OP phases are created. Proportional to each phase, the production scheduling of underground stopes is executed. Finally, in order to opt the best scenario, the net present value of the whole project (OP & UG) achieved from different scenarios are compared with each other. The results obtained indicate that the optimum interface of the OP and UG mining activities correspond to the ultimate OP limit with a maximum depth of 200 m from the ground surface.