使用机器学习的材料模型校准:比较研究

IF 1.5 Q3 MECHANICS
M. Seabra, Ana Costa
{"title":"使用机器学习的材料模型校准:比较研究","authors":"M. Seabra, Ana Costa","doi":"10.13052/ejcm2642-2085.3115","DOIUrl":null,"url":null,"abstract":"A methodology based on Machine Learning, namely Fully Connected Neural Networks, is proposed to replace traditional parameter calibration strategies. In particular, the relation between hardness, yield strength and tensile strength is explored. The proposed methodology is used to predict the yield strength and the tensile strength of a Super Duplex Stainless Steel that was not included in the neural network training data base. Moreover, it is also used to determine such material parameters for individual microstructural phases, which feed a multiscale Finite Element simulation. The methodology is experimentally validated.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Material Model Calibration Using Machine Learning: A Comparative Study\",\"authors\":\"M. Seabra, Ana Costa\",\"doi\":\"10.13052/ejcm2642-2085.3115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A methodology based on Machine Learning, namely Fully Connected Neural Networks, is proposed to replace traditional parameter calibration strategies. In particular, the relation between hardness, yield strength and tensile strength is explored. The proposed methodology is used to predict the yield strength and the tensile strength of a Super Duplex Stainless Steel that was not included in the neural network training data base. Moreover, it is also used to determine such material parameters for individual microstructural phases, which feed a multiscale Finite Element simulation. The methodology is experimentally validated.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.3115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于机器学习的方法,即全连接神经网络,以取代传统的参数校准策略。特别探讨了硬度、屈服强度和抗拉强度之间的关系。所提出的方法用于预测神经网络训练数据库中未包含的超级双相不锈钢的屈服强度和拉伸强度。此外,它还用于确定单个微观结构相的此类材料参数,从而提供多尺度有限元模拟。该方法经实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Model Calibration Using Machine Learning: A Comparative Study
A methodology based on Machine Learning, namely Fully Connected Neural Networks, is proposed to replace traditional parameter calibration strategies. In particular, the relation between hardness, yield strength and tensile strength is explored. The proposed methodology is used to predict the yield strength and the tensile strength of a Super Duplex Stainless Steel that was not included in the neural network training data base. Moreover, it is also used to determine such material parameters for individual microstructural phases, which feed a multiscale Finite Element simulation. The methodology is experimentally validated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信