{"title":"大型游艇上部结构气动特性CFD仿真研究","authors":"A. Z. Saydam, S. Gokcay, M. Insel","doi":"10.5957/JSPD.09190051","DOIUrl":null,"url":null,"abstract":"Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":"36 1","pages":"259-270"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Aerodynamic Characteristics of Mega-Yacht Superstructures by CFD Simulations\",\"authors\":\"A. Z. Saydam, S. Gokcay, M. Insel\",\"doi\":\"10.5957/JSPD.09190051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\"36 1\",\"pages\":\"259-270\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.09190051\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.09190051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Evaluation of Aerodynamic Characteristics of Mega-Yacht Superstructures by CFD Simulations
Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.