具有无界二次损失的专家预测在线聚合算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexander Korotin, V. V'yugin, E. Burnaev
{"title":"具有无界二次损失的专家预测在线聚合算法","authors":"Alexander Korotin, V. V'yugin, E. Burnaev","doi":"10.1070/RM9961","DOIUrl":null,"url":null,"abstract":"We consider the problem of online aggregation of experts’ predictions with a quadratic loss function. At the beginning of each round t = 1, 2, . . . , T , experts n = 1, . . . , N provide predictions γ t , . . . , γ t ∈ H (where H is a Hilbert space). The player aggregates the predictions to a single prediction γt ∈ H. Then nature provides the true outcome ω ∈ H. The player and the experts n = 1, . . . , N suffer the losses ht = ∥ω−γt∥ and l t = ∥ω−γ t ∥, respectively, and the next round t + 1 begins. The goal of the player is to minimize the regret, that is, the difference between the total loss of the player and the loss of the best expert: RT = ∑T t=1 ht −minn=1,...,N ∑T t=1 l n t .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online algorithm for aggregating experts’ predictions with unbounded quadratic loss\",\"authors\":\"Alexander Korotin, V. V'yugin, E. Burnaev\",\"doi\":\"10.1070/RM9961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of online aggregation of experts’ predictions with a quadratic loss function. At the beginning of each round t = 1, 2, . . . , T , experts n = 1, . . . , N provide predictions γ t , . . . , γ t ∈ H (where H is a Hilbert space). The player aggregates the predictions to a single prediction γt ∈ H. Then nature provides the true outcome ω ∈ H. The player and the experts n = 1, . . . , N suffer the losses ht = ∥ω−γt∥ and l t = ∥ω−γ t ∥, respectively, and the next round t + 1 begins. The goal of the player is to minimize the regret, that is, the difference between the total loss of the player and the loss of the best expert: RT = ∑T t=1 ht −minn=1,...,N ∑T t=1 l n t .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9961\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9961","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了具有二次损失函数的专家预测的在线聚合问题。在每一轮的开始t=1,2,T,专家n=1,N提供预测γ,γt∈H(其中H是希尔伯特空间)。玩家将预测聚合为一个单独的预测γt∈H。然后自然提供了真实的结果ω∈H.玩家和专家n=1,N分别遭受损失ht=½ω-γt½和l t=½ω-伽玛t½,下一轮t+1开始。玩家的目标是最大限度地减少遗憾,即玩家的总损失与最佳专家的损失之差:RT=∑T T=1 ht−minn=1,。。。,N∑T T=1 l N T。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online algorithm for aggregating experts’ predictions with unbounded quadratic loss
We consider the problem of online aggregation of experts’ predictions with a quadratic loss function. At the beginning of each round t = 1, 2, . . . , T , experts n = 1, . . . , N provide predictions γ t , . . . , γ t ∈ H (where H is a Hilbert space). The player aggregates the predictions to a single prediction γt ∈ H. Then nature provides the true outcome ω ∈ H. The player and the experts n = 1, . . . , N suffer the losses ht = ∥ω−γt∥ and l t = ∥ω−γ t ∥, respectively, and the next round t + 1 begins. The goal of the player is to minimize the regret, that is, the difference between the total loss of the player and the loss of the best expert: RT = ∑T t=1 ht −minn=1,...,N ∑T t=1 l n t .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信