Ngoc Thien Lam, Melanie Gartz, Leah Thomas, Margaret Haberman, Jennifer L Strande
{"title":"微小RNA和外泌体对肌肉健康和疾病的影响","authors":"Ngoc Thien Lam, Melanie Gartz, Leah Thomas, Margaret Haberman, Jennifer L Strande","doi":"10.1007/s10974-019-09555-5","DOIUrl":null,"url":null,"abstract":"<p><p>microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":"41 1","pages":"269-284"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10974-019-09555-5","citationCount":"12","resultStr":"{\"title\":\"Influence of microRNAs and exosomes in muscle health and diseases.\",\"authors\":\"Ngoc Thien Lam, Melanie Gartz, Leah Thomas, Margaret Haberman, Jennifer L Strande\",\"doi\":\"10.1007/s10974-019-09555-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.</p>\",\"PeriodicalId\":16422,\"journal\":{\"name\":\"Journal of Muscle Research and Cell Motility\",\"volume\":\"41 1\",\"pages\":\"269-284\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10974-019-09555-5\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Muscle Research and Cell Motility\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10974-019-09555-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-019-09555-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Influence of microRNAs and exosomes in muscle health and diseases.
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
期刊介绍:
The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.