{"title":"联合摄像机参数细化统一形状和外观重建","authors":"Julian Kaltheuner, Patrick Stotko, Reinhard Klein","doi":"10.1016/j.gmod.2023.101193","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present an inverse rendering method for the simple reconstruction of shape and appearance of real-world objects from only roughly calibrated RGB images captured under collocated point light illumination. To this end, we gradually reconstruct the lower-frequency geometry information using automatically generated occupancy mask images based on a visual hull initialization of the mesh, to infer the object topology, and a smoothness-preconditioned optimization. By combining this geometry estimation with learning-based SVBRDF parameter inference as well as intrinsic and extrinsic camera parameter refinement in a joint and unified formulation, our novel method is able to reconstruct shape and an isotropic SVBRDF from fewer input images than previous methods. Unlike in other works, we also estimate normal maps as part of the SVBRDF to capture and represent higher-frequency geometric details in a compact way. Furthermore, by regularizing the appearance estimation with a GAN-based SVBRDF generator, we are able to meaningfully limit the solution space. In summary, this leads to a robust automatic reconstruction algorithm for shape and appearance. We evaluated our algorithm on synthetic as well as on real-world data and demonstrate that our method is able to reconstruct complex objects with high-fidelity reflection properties in a robust way, also in the presence of imperfect camera parameter data.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101193"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified shape and appearance reconstruction with joint camera parameter refinement\",\"authors\":\"Julian Kaltheuner, Patrick Stotko, Reinhard Klein\",\"doi\":\"10.1016/j.gmod.2023.101193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present an inverse rendering method for the simple reconstruction of shape and appearance of real-world objects from only roughly calibrated RGB images captured under collocated point light illumination. To this end, we gradually reconstruct the lower-frequency geometry information using automatically generated occupancy mask images based on a visual hull initialization of the mesh, to infer the object topology, and a smoothness-preconditioned optimization. By combining this geometry estimation with learning-based SVBRDF parameter inference as well as intrinsic and extrinsic camera parameter refinement in a joint and unified formulation, our novel method is able to reconstruct shape and an isotropic SVBRDF from fewer input images than previous methods. Unlike in other works, we also estimate normal maps as part of the SVBRDF to capture and represent higher-frequency geometric details in a compact way. Furthermore, by regularizing the appearance estimation with a GAN-based SVBRDF generator, we are able to meaningfully limit the solution space. In summary, this leads to a robust automatic reconstruction algorithm for shape and appearance. We evaluated our algorithm on synthetic as well as on real-world data and demonstrate that our method is able to reconstruct complex objects with high-fidelity reflection properties in a robust way, also in the presence of imperfect camera parameter data.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"129 \",\"pages\":\"Article 101193\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000231\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Unified shape and appearance reconstruction with joint camera parameter refinement
In this paper, we present an inverse rendering method for the simple reconstruction of shape and appearance of real-world objects from only roughly calibrated RGB images captured under collocated point light illumination. To this end, we gradually reconstruct the lower-frequency geometry information using automatically generated occupancy mask images based on a visual hull initialization of the mesh, to infer the object topology, and a smoothness-preconditioned optimization. By combining this geometry estimation with learning-based SVBRDF parameter inference as well as intrinsic and extrinsic camera parameter refinement in a joint and unified formulation, our novel method is able to reconstruct shape and an isotropic SVBRDF from fewer input images than previous methods. Unlike in other works, we also estimate normal maps as part of the SVBRDF to capture and represent higher-frequency geometric details in a compact way. Furthermore, by regularizing the appearance estimation with a GAN-based SVBRDF generator, we are able to meaningfully limit the solution space. In summary, this leads to a robust automatic reconstruction algorithm for shape and appearance. We evaluated our algorithm on synthetic as well as on real-world data and demonstrate that our method is able to reconstruct complex objects with high-fidelity reflection properties in a robust way, also in the presence of imperfect camera parameter data.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.