{"title":"用dvcc实现电压传递函数","authors":"T. Rathore","doi":"10.4236/CS.2018.910015","DOIUrl":null,"url":null,"abstract":"Maheshwari has proposed three differential-voltage current-conveyor configurations for realizing first order all-pass filters only. This paper has exploited these configurations for realizing more complex transfer function T(s) which yield poles and zeros of 1 - T(s) in one of the four admissible patterns. Bilinear and biquadratic functions are dealt in detail. It is shown that only bilinear functions can be realized with all the four passive elements grounded. First order all-pass function is a special case which needs only three elements (2R, 1C) or (1R, 2C). A biquadratic function requires (2R, 2C) elements and has all the capacitor grounded. Design of second order all-pass function is given.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realizations of Voltage Transfer Functions Using DVCCs\",\"authors\":\"T. Rathore\",\"doi\":\"10.4236/CS.2018.910015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maheshwari has proposed three differential-voltage current-conveyor configurations for realizing first order all-pass filters only. This paper has exploited these configurations for realizing more complex transfer function T(s) which yield poles and zeros of 1 - T(s) in one of the four admissible patterns. Bilinear and biquadratic functions are dealt in detail. It is shown that only bilinear functions can be realized with all the four passive elements grounded. First order all-pass function is a special case which needs only three elements (2R, 1C) or (1R, 2C). A biquadratic function requires (2R, 2C) elements and has all the capacitor grounded. Design of second order all-pass function is given.\",\"PeriodicalId\":63422,\"journal\":{\"name\":\"电路与系统(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/CS.2018.910015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2018.910015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realizations of Voltage Transfer Functions Using DVCCs
Maheshwari has proposed three differential-voltage current-conveyor configurations for realizing first order all-pass filters only. This paper has exploited these configurations for realizing more complex transfer function T(s) which yield poles and zeros of 1 - T(s) in one of the four admissible patterns. Bilinear and biquadratic functions are dealt in detail. It is shown that only bilinear functions can be realized with all the four passive elements grounded. First order all-pass function is a special case which needs only three elements (2R, 1C) or (1R, 2C). A biquadratic function requires (2R, 2C) elements and has all the capacitor grounded. Design of second order all-pass function is given.