弹性趋势滤波

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juyoung Jeong, Y. Jung, S. Yun
{"title":"弹性趋势滤波","authors":"Juyoung Jeong, Y. Jung, S. Yun","doi":"10.1515/ijnsns-2021-0237","DOIUrl":null,"url":null,"abstract":"Abstract Trend filtering aims to estimate underlying trends in time series data, which is necessary to investigate data in a variety of disciplines. We propose a new method called elastic trend filtering. The proposed method combines ℓ 2 and ℓ 1 norm penalties to exploit the benefits and strengths of Hodrick–Prescott and ℓ 1 trend filterings. We apply the alternating direction method of multipliers for its efficient computation and numerical experiments show the soundness and efficiency of the proposed method. We further apply the proposed method to graph cases for potential applications and suggest a trend filtering for its variance estimate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elastic trend filtering\",\"authors\":\"Juyoung Jeong, Y. Jung, S. Yun\",\"doi\":\"10.1515/ijnsns-2021-0237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Trend filtering aims to estimate underlying trends in time series data, which is necessary to investigate data in a variety of disciplines. We propose a new method called elastic trend filtering. The proposed method combines ℓ 2 and ℓ 1 norm penalties to exploit the benefits and strengths of Hodrick–Prescott and ℓ 1 trend filterings. We apply the alternating direction method of multipliers for its efficient computation and numerical experiments show the soundness and efficiency of the proposed method. We further apply the proposed method to graph cases for potential applications and suggest a trend filtering for its variance estimate.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0237\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

趋势过滤的目的是估计时间序列数据的潜在趋势,这是研究各种学科数据所必需的。我们提出了一种新的方法——弹性趋势滤波。该方法结合了l2范数惩罚和l1范数惩罚,利用了Hodrick-Prescott和l1趋势滤波的优点和优势。采用乘法器的交替方向法计算效率高,数值实验证明了该方法的有效性。我们进一步将所提出的方法应用于潜在应用的图形案例,并建议对其方差估计进行趋势过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic trend filtering
Abstract Trend filtering aims to estimate underlying trends in time series data, which is necessary to investigate data in a variety of disciplines. We propose a new method called elastic trend filtering. The proposed method combines ℓ 2 and ℓ 1 norm penalties to exploit the benefits and strengths of Hodrick–Prescott and ℓ 1 trend filterings. We apply the alternating direction method of multipliers for its efficient computation and numerical experiments show the soundness and efficiency of the proposed method. We further apply the proposed method to graph cases for potential applications and suggest a trend filtering for its variance estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信