TiO2对不锈钢渣微晶玻璃中铬产生和分布的影响

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Zhifang Tong, Jiaxing Wang, Congcong Xu, Zhaoxun Xie
{"title":"TiO2对不锈钢渣微晶玻璃中铬产生和分布的影响","authors":"Zhifang Tong,&nbsp;Jiaxing Wang,&nbsp;Congcong Xu,&nbsp;Zhaoxun Xie","doi":"10.1111/ijag.16638","DOIUrl":null,"url":null,"abstract":"<p>Stainless steel slag waste can be used to prepare value-added glass ceramics, which can fix potentially toxic Cr from the slag within the crystalline phase. The occurrence and distribution of Cr during the preparation of glass ceramics has a great influence on the final Cr fixation effect. In this study, the effects of the TiO<sub>2</sub> content on the occurrence and distribution of Cr during the nucleation and crystallization steps and on the final properties of the glass ceramics were systematically studied. In the nucleation stage, with increasing TiO<sub>2</sub> content, the Cr distributed in the spinel containing chromium nuclei first increases and then decreases. In the crystallization stage, Diopside crystal phase nucleates and grows with spinel containing chromium nanocrystals as heterogeneous nuclei. X-ray photoelectron spectroscopy analysis showed that the chromium distributed in the diopside crystals first increased and then slightly decreased as the TiO<sub>2</sub> content increased. The optimal TiO<sub>2</sub> content is 3.4 wt.%, which resulted in 97 wt.% of the total Cr being fixed in the diopside crystalline phase (with a very low Cr leaching concentration of 0.009 mg/L), and a high compressive strength of the final glass ceramic of 267.4 MPa, and a Vickers hardness of 1211.8 HV. The research results provide theoretical and technical support for strengthening Cr fixation to enable harmless and high-value utilization of stainless steel slag for fabricating glass ceramics.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"522-533"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of TiO2 on the occurrence and distribution of chromium in stainless-steel slag glass ceramics\",\"authors\":\"Zhifang Tong,&nbsp;Jiaxing Wang,&nbsp;Congcong Xu,&nbsp;Zhaoxun Xie\",\"doi\":\"10.1111/ijag.16638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stainless steel slag waste can be used to prepare value-added glass ceramics, which can fix potentially toxic Cr from the slag within the crystalline phase. The occurrence and distribution of Cr during the preparation of glass ceramics has a great influence on the final Cr fixation effect. In this study, the effects of the TiO<sub>2</sub> content on the occurrence and distribution of Cr during the nucleation and crystallization steps and on the final properties of the glass ceramics were systematically studied. In the nucleation stage, with increasing TiO<sub>2</sub> content, the Cr distributed in the spinel containing chromium nuclei first increases and then decreases. In the crystallization stage, Diopside crystal phase nucleates and grows with spinel containing chromium nanocrystals as heterogeneous nuclei. X-ray photoelectron spectroscopy analysis showed that the chromium distributed in the diopside crystals first increased and then slightly decreased as the TiO<sub>2</sub> content increased. The optimal TiO<sub>2</sub> content is 3.4 wt.%, which resulted in 97 wt.% of the total Cr being fixed in the diopside crystalline phase (with a very low Cr leaching concentration of 0.009 mg/L), and a high compressive strength of the final glass ceramic of 267.4 MPa, and a Vickers hardness of 1211.8 HV. The research results provide theoretical and technical support for strengthening Cr fixation to enable harmless and high-value utilization of stainless steel slag for fabricating glass ceramics.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"14 4\",\"pages\":\"522-533\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16638\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16638","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

不锈钢渣废料可以用来制备增值玻璃陶瓷,它可以在结晶相内固定渣中潜在有毒的Cr。在玻璃陶瓷的制备过程中,Cr的出现和分布对最终的固铬效果有很大的影响。本研究系统研究了TiO2含量对玻璃陶瓷成核结晶过程中Cr的出现和分布以及最终性能的影响。在成核阶段,随着TiO2含量的增加,分布在含铬尖晶石中的Cr先增加后减少。在结晶阶段,透辉石晶相以含尖晶石的纳米铬晶为非均相核形核生长。x射线光电子能谱分析表明,随着TiO2含量的增加,透辉石晶体中铬的含量先增加后略有下降。当TiO2含量为3.4 wt.%时,总Cr的97 wt.%被固定在透辉石晶相中(Cr浸出浓度极低,为0.009 mg/L),最终玻璃陶瓷的抗压强度为267.4 MPa,维氏硬度为1211.8 HV。研究结果为强化固铬,实现不锈钢渣无害化、高价值利用,用于玻璃陶瓷的生产提供了理论和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of TiO2 on the occurrence and distribution of chromium in stainless-steel slag glass ceramics

Effect of TiO2 on the occurrence and distribution of chromium in stainless-steel slag glass ceramics

Stainless steel slag waste can be used to prepare value-added glass ceramics, which can fix potentially toxic Cr from the slag within the crystalline phase. The occurrence and distribution of Cr during the preparation of glass ceramics has a great influence on the final Cr fixation effect. In this study, the effects of the TiO2 content on the occurrence and distribution of Cr during the nucleation and crystallization steps and on the final properties of the glass ceramics were systematically studied. In the nucleation stage, with increasing TiO2 content, the Cr distributed in the spinel containing chromium nuclei first increases and then decreases. In the crystallization stage, Diopside crystal phase nucleates and grows with spinel containing chromium nanocrystals as heterogeneous nuclei. X-ray photoelectron spectroscopy analysis showed that the chromium distributed in the diopside crystals first increased and then slightly decreased as the TiO2 content increased. The optimal TiO2 content is 3.4 wt.%, which resulted in 97 wt.% of the total Cr being fixed in the diopside crystalline phase (with a very low Cr leaching concentration of 0.009 mg/L), and a high compressive strength of the final glass ceramic of 267.4 MPa, and a Vickers hardness of 1211.8 HV. The research results provide theoretical and technical support for strengthening Cr fixation to enable harmless and high-value utilization of stainless steel slag for fabricating glass ceramics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信