{"title":"基于小波变换的接触力时频特性研究","authors":"Fang He, Jian Zhang","doi":"10.1049/els2.12053","DOIUrl":null,"url":null,"abstract":"<p>When a train runs at high speed, affected by the structural characteristics of the catenary, the contact force changes periodically with span and dropper spacing. However, as the running speed of the train increases, the periodic signal of the contact force changes owing to the fluctuation of the catenary and the vibration of the pantograph, which directly affects the stable contact between the pantograph and catenary. Therefore, based on the simulation research method, this study uses the time–frequency transformation method to investigate the influence of changes in the catenary structure on the periodic signal of the contact force. First, the structural design of the catenary structure of the existing railway line is carried out by changing the length of the stitch wires and the dropper spacing, and the stiffness and stiffness curvature variation when the arrangement of the stitch wires and dropper varies are analysed. Then, the relationship between the stiffness, stiffness curvature variation, and contact force variation is analysed. Finally, the wavelet transform method is used to transform the contact force, and variations in the key amplitude component of the contact force are analysed when the structural parameters are changed, and the relationship between the period and the key amplitude component is obtained. By analysing the time–frequency characteristics of the contact force, technical support for improving the speed of the train can be provided.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12053","citationCount":"0","resultStr":"{\"title\":\"Research on time–frequency characteristics of contact force based on wavelet transform\",\"authors\":\"Fang He, Jian Zhang\",\"doi\":\"10.1049/els2.12053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When a train runs at high speed, affected by the structural characteristics of the catenary, the contact force changes periodically with span and dropper spacing. However, as the running speed of the train increases, the periodic signal of the contact force changes owing to the fluctuation of the catenary and the vibration of the pantograph, which directly affects the stable contact between the pantograph and catenary. Therefore, based on the simulation research method, this study uses the time–frequency transformation method to investigate the influence of changes in the catenary structure on the periodic signal of the contact force. First, the structural design of the catenary structure of the existing railway line is carried out by changing the length of the stitch wires and the dropper spacing, and the stiffness and stiffness curvature variation when the arrangement of the stitch wires and dropper varies are analysed. Then, the relationship between the stiffness, stiffness curvature variation, and contact force variation is analysed. Finally, the wavelet transform method is used to transform the contact force, and variations in the key amplitude component of the contact force are analysed when the structural parameters are changed, and the relationship between the period and the key amplitude component is obtained. By analysing the time–frequency characteristics of the contact force, technical support for improving the speed of the train can be provided.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12053\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on time–frequency characteristics of contact force based on wavelet transform
When a train runs at high speed, affected by the structural characteristics of the catenary, the contact force changes periodically with span and dropper spacing. However, as the running speed of the train increases, the periodic signal of the contact force changes owing to the fluctuation of the catenary and the vibration of the pantograph, which directly affects the stable contact between the pantograph and catenary. Therefore, based on the simulation research method, this study uses the time–frequency transformation method to investigate the influence of changes in the catenary structure on the periodic signal of the contact force. First, the structural design of the catenary structure of the existing railway line is carried out by changing the length of the stitch wires and the dropper spacing, and the stiffness and stiffness curvature variation when the arrangement of the stitch wires and dropper varies are analysed. Then, the relationship between the stiffness, stiffness curvature variation, and contact force variation is analysed. Finally, the wavelet transform method is used to transform the contact force, and variations in the key amplitude component of the contact force are analysed when the structural parameters are changed, and the relationship between the period and the key amplitude component is obtained. By analysing the time–frequency characteristics of the contact force, technical support for improving the speed of the train can be provided.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.