能级能量功率指数公式应用的新视角

IF 0.4 Q4 PHYSICS, PARTICLES & FIELDS
Rajesh Kumar, S. Sharma
{"title":"能级能量功率指数公式应用的新视角","authors":"Rajesh Kumar,&nbsp;S. Sharma","doi":"10.1134/S154747712304043X","DOIUrl":null,"url":null,"abstract":"<p>The power index formula is an alternative method in the form of single term energy expression i.e. <span>\\({{E}_{{\\left( I \\right)}}} = a{{I}^{{b~}}}\\)</span> to calculate the energy spectrum of even-even nuclei. In the earlier studies the validity of power index formula for <i>g-,</i> β<i>-</i> and γ-bands in various mass regions of nuclear chart were discussed well. In this paper, we illustrate the new perspective in the use of power index formula for <i>g-,</i> β<i>-</i> and γ<i>-</i>bands of even <i>Z</i>, even <i>N</i> nuclei i.e. sub-shell change in semi magic nuclei, the validity of formula for β-band energies and kinetic moment of inertia (kinetic MoI) of γ-band for some <sup>142–148</sup>Ba, <sup>144–152</sup>Ce and <sup>146–156</sup>Nd nuclei. We also compared the energy values calculated by power index formula with the experimental values and Interacting Boson Model-1(IBM-1) values.</p>","PeriodicalId":730,"journal":{"name":"Physics of Particles and Nuclei Letters","volume":"20 4","pages":"583 - 588"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Perspective in the Use of Power Index Formula for Level Energies\",\"authors\":\"Rajesh Kumar,&nbsp;S. Sharma\",\"doi\":\"10.1134/S154747712304043X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The power index formula is an alternative method in the form of single term energy expression i.e. <span>\\\\({{E}_{{\\\\left( I \\\\right)}}} = a{{I}^{{b~}}}\\\\)</span> to calculate the energy spectrum of even-even nuclei. In the earlier studies the validity of power index formula for <i>g-,</i> β<i>-</i> and γ-bands in various mass regions of nuclear chart were discussed well. In this paper, we illustrate the new perspective in the use of power index formula for <i>g-,</i> β<i>-</i> and γ<i>-</i>bands of even <i>Z</i>, even <i>N</i> nuclei i.e. sub-shell change in semi magic nuclei, the validity of formula for β-band energies and kinetic moment of inertia (kinetic MoI) of γ-band for some <sup>142–148</sup>Ba, <sup>144–152</sup>Ce and <sup>146–156</sup>Nd nuclei. We also compared the energy values calculated by power index formula with the experimental values and Interacting Boson Model-1(IBM-1) values.</p>\",\"PeriodicalId\":730,\"journal\":{\"name\":\"Physics of Particles and Nuclei Letters\",\"volume\":\"20 4\",\"pages\":\"583 - 588\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Particles and Nuclei Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S154747712304043X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S154747712304043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

幂指数公式是计算偶偶核能谱的一种替代方法,其形式为单项能量表达式\({{E}_{{\left( I \right)}}} = a{{I}^{{b~}}}\)。在早期的研究中,对核图各质量区g-、β-和γ-波段功率指数公式的有效性进行了较好的讨论。本文阐述了偶Z、偶N核的g-、β-和γ-带幂指数公式的新观点,即半神奇核的亚壳变化,以及一些142-148Ba、144-152Ce和146-156Nd核的β-带能量和γ-带运动惯量(动能MoI)公式的有效性。我们还将功率指数公式计算的能量值与实验值和相互作用玻色子模型-1(IBM-1)值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Perspective in the Use of Power Index Formula for Level Energies

New Perspective in the Use of Power Index Formula for Level Energies

The power index formula is an alternative method in the form of single term energy expression i.e. \({{E}_{{\left( I \right)}}} = a{{I}^{{b~}}}\) to calculate the energy spectrum of even-even nuclei. In the earlier studies the validity of power index formula for g-, β- and γ-bands in various mass regions of nuclear chart were discussed well. In this paper, we illustrate the new perspective in the use of power index formula for g-, β- and γ-bands of even Z, even N nuclei i.e. sub-shell change in semi magic nuclei, the validity of formula for β-band energies and kinetic moment of inertia (kinetic MoI) of γ-band for some 142–148Ba, 144–152Ce and 146–156Nd nuclei. We also compared the energy values calculated by power index formula with the experimental values and Interacting Boson Model-1(IBM-1) values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Particles and Nuclei Letters
Physics of Particles and Nuclei Letters PHYSICS, PARTICLES & FIELDS-
CiteScore
0.80
自引率
20.00%
发文量
108
期刊介绍: The journal Physics of Particles and Nuclei Letters, brief name Particles and Nuclei Letters, publishes the articles with results of the original theoretical, experimental, scientific-technical, methodological and applied research. Subject matter of articles covers: theoretical physics, elementary particle physics, relativistic nuclear physics, nuclear physics and related problems in other branches of physics, neutron physics, condensed matter physics, physics and engineering at low temperatures, physics and engineering of accelerators, physical experimental instruments and methods, physical computation experiments, applied research in these branches of physics and radiology, ecology and nuclear medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信