A. Nartea, Paolo Lucci, M. Loizzo, R. Tundis, M. Leporini, Luigia Gervasi, Benedetta Fanesi, Oscar Núñez, N. Frega, D. Fiorini, D. Pacetti
{"title":"咖啡粉提取物在食品和营养保健工业中可能是一种有用的功能性成分吗?","authors":"A. Nartea, Paolo Lucci, M. Loizzo, R. Tundis, M. Leporini, Luigia Gervasi, Benedetta Fanesi, Oscar Núñez, N. Frega, D. Fiorini, D. Pacetti","doi":"10.15586/ijfs.v34i1.2171","DOIUrl":null,"url":null,"abstract":"The present study aimed to assess the phytochemical content and in vitro bioactivity of ethanolic extracts of Arabica (A) and/or Robusta (R) coffee powder having different geographical origins. For this purpose, total phenols (TPC) and flavonoids (TFC) content as well as α- and β-tocopherol were quantified. The antioxidant activity was assessed by using a multi-target approach in which the radical scavenging potential, the protection from lipid peroxidation, and the involvement of the iron-reducing mechanism were applied. The carbohydrate hydrolyzing enzymes’ (α-amylase and α-glucosidase) inhibitory activities were also assessed. Arabica coffee sample (C2-A) showed the highest TPC, TFC, and α-tocopherol content with values of 63.1 mg chlorogenic acid equivalents (CAE)/g dry powder, 16.2 mg of quercetin (QE) equivalents/g dry powder, and 5.6 mg/100 g dry powder, respectively. Relative Antioxidant Capacity Index (RACI), used to statistically integrate results from 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability power (FRAP), and protection of lipid peroxidation assays, evidenced that sample C4-R derived from Robusta from Guatemala showed the highest antioxidant potential with a value of –0.61. Arabica from Puerto Rico was the most active against α-amylase, whereas the blend Arabica/Robusta sample (C5-A60R40) showed the highest inhibitory activity against α-glucosidase with IC50 values of 120.2 and 134.6 mg/mL, respectively. The results show how the qualitative-quantitative composition of the extracts is strongly associated not only with the variety but also with the geographical origin of the samples.","PeriodicalId":14670,"journal":{"name":"Italian Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Is coffee powder extract a possible functional ingredient useful in food and nutraceutical industries?\",\"authors\":\"A. Nartea, Paolo Lucci, M. Loizzo, R. Tundis, M. Leporini, Luigia Gervasi, Benedetta Fanesi, Oscar Núñez, N. Frega, D. Fiorini, D. Pacetti\",\"doi\":\"10.15586/ijfs.v34i1.2171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study aimed to assess the phytochemical content and in vitro bioactivity of ethanolic extracts of Arabica (A) and/or Robusta (R) coffee powder having different geographical origins. For this purpose, total phenols (TPC) and flavonoids (TFC) content as well as α- and β-tocopherol were quantified. The antioxidant activity was assessed by using a multi-target approach in which the radical scavenging potential, the protection from lipid peroxidation, and the involvement of the iron-reducing mechanism were applied. The carbohydrate hydrolyzing enzymes’ (α-amylase and α-glucosidase) inhibitory activities were also assessed. Arabica coffee sample (C2-A) showed the highest TPC, TFC, and α-tocopherol content with values of 63.1 mg chlorogenic acid equivalents (CAE)/g dry powder, 16.2 mg of quercetin (QE) equivalents/g dry powder, and 5.6 mg/100 g dry powder, respectively. Relative Antioxidant Capacity Index (RACI), used to statistically integrate results from 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability power (FRAP), and protection of lipid peroxidation assays, evidenced that sample C4-R derived from Robusta from Guatemala showed the highest antioxidant potential with a value of –0.61. Arabica from Puerto Rico was the most active against α-amylase, whereas the blend Arabica/Robusta sample (C5-A60R40) showed the highest inhibitory activity against α-glucosidase with IC50 values of 120.2 and 134.6 mg/mL, respectively. The results show how the qualitative-quantitative composition of the extracts is strongly associated not only with the variety but also with the geographical origin of the samples.\",\"PeriodicalId\":14670,\"journal\":{\"name\":\"Italian Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/ijfs.v34i1.2171\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/ijfs.v34i1.2171","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Is coffee powder extract a possible functional ingredient useful in food and nutraceutical industries?
The present study aimed to assess the phytochemical content and in vitro bioactivity of ethanolic extracts of Arabica (A) and/or Robusta (R) coffee powder having different geographical origins. For this purpose, total phenols (TPC) and flavonoids (TFC) content as well as α- and β-tocopherol were quantified. The antioxidant activity was assessed by using a multi-target approach in which the radical scavenging potential, the protection from lipid peroxidation, and the involvement of the iron-reducing mechanism were applied. The carbohydrate hydrolyzing enzymes’ (α-amylase and α-glucosidase) inhibitory activities were also assessed. Arabica coffee sample (C2-A) showed the highest TPC, TFC, and α-tocopherol content with values of 63.1 mg chlorogenic acid equivalents (CAE)/g dry powder, 16.2 mg of quercetin (QE) equivalents/g dry powder, and 5.6 mg/100 g dry powder, respectively. Relative Antioxidant Capacity Index (RACI), used to statistically integrate results from 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability power (FRAP), and protection of lipid peroxidation assays, evidenced that sample C4-R derived from Robusta from Guatemala showed the highest antioxidant potential with a value of –0.61. Arabica from Puerto Rico was the most active against α-amylase, whereas the blend Arabica/Robusta sample (C5-A60R40) showed the highest inhibitory activity against α-glucosidase with IC50 values of 120.2 and 134.6 mg/mL, respectively. The results show how the qualitative-quantitative composition of the extracts is strongly associated not only with the variety but also with the geographical origin of the samples.
期刊介绍:
"Italian Journal of Food Science" is an international journal publishing original, basic and applied papers, reviews, short communications, surveys and opinions on food science and technology with specific reference to the Mediterranean Region. Its expanded scope includes food production, food engineering, food management, food quality, shelf-life, consumer acceptance of foodstuffs, food safety and nutrition, energy and environmental aspects of food processing on the whole life cycle.
Reviews and surveys on specific topics relevant to the advance of the Mediterranean food industry are particularly welcome.