{"title":"火山石榴石的洞察:以布列辛尼安山岩(中欧喀尔巴阡山脉西部斯洛伐克中部火山田)的详细岩石矿物学研究为例,说明石榴石的起源和意义","authors":"J. Bouloton","doi":"10.30909/vol.04.02.149187","DOIUrl":null,"url":null,"abstract":"Almandine-rich garnets from a Neogene andesite of Slovakia can be divided into two main types. Garnet megacrysts are magmatic and form a chemically homogeneous group that contains, on average, about 5 wt% CaO and 4.5 wt% MgO as petrogenetically significant components. Garnets occurring in lithic fragments and garnets aggregated in garnetite lenses are characterised by Ca-poor cores (CaO <= 2 wt%) that testify for a two-step history and correspond respectively to inherited pre-anatectic and peritectic garnets. Available experimental data show that the composition of magmatic garnet megacrysts is compatible with a peritectic origin, through the fluid-absent melting of an immature metasedimentary protolith or a tonalitic gneiss. However, thermal evolution evidenced by zircons shielded in garnet rather suggests that garnet nucleated and grew by cooling of a hybrid magma pool, resulting from the complete mixing of crust- and mantle-derived melts.","PeriodicalId":33053,"journal":{"name":"Volcanica","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into volcanic garnet: origin and significance of garnet as exemplified by a detailed petro-mineralogical study of the Breziny andesite (Central Slovakia Volcanic Field, Western Carpathians, Central Europe)\",\"authors\":\"J. Bouloton\",\"doi\":\"10.30909/vol.04.02.149187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Almandine-rich garnets from a Neogene andesite of Slovakia can be divided into two main types. Garnet megacrysts are magmatic and form a chemically homogeneous group that contains, on average, about 5 wt% CaO and 4.5 wt% MgO as petrogenetically significant components. Garnets occurring in lithic fragments and garnets aggregated in garnetite lenses are characterised by Ca-poor cores (CaO <= 2 wt%) that testify for a two-step history and correspond respectively to inherited pre-anatectic and peritectic garnets. Available experimental data show that the composition of magmatic garnet megacrysts is compatible with a peritectic origin, through the fluid-absent melting of an immature metasedimentary protolith or a tonalitic gneiss. However, thermal evolution evidenced by zircons shielded in garnet rather suggests that garnet nucleated and grew by cooling of a hybrid magma pool, resulting from the complete mixing of crust- and mantle-derived melts.\",\"PeriodicalId\":33053,\"journal\":{\"name\":\"Volcanica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volcanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30909/vol.04.02.149187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volcanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30909/vol.04.02.149187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Insight into volcanic garnet: origin and significance of garnet as exemplified by a detailed petro-mineralogical study of the Breziny andesite (Central Slovakia Volcanic Field, Western Carpathians, Central Europe)
Almandine-rich garnets from a Neogene andesite of Slovakia can be divided into two main types. Garnet megacrysts are magmatic and form a chemically homogeneous group that contains, on average, about 5 wt% CaO and 4.5 wt% MgO as petrogenetically significant components. Garnets occurring in lithic fragments and garnets aggregated in garnetite lenses are characterised by Ca-poor cores (CaO <= 2 wt%) that testify for a two-step history and correspond respectively to inherited pre-anatectic and peritectic garnets. Available experimental data show that the composition of magmatic garnet megacrysts is compatible with a peritectic origin, through the fluid-absent melting of an immature metasedimentary protolith or a tonalitic gneiss. However, thermal evolution evidenced by zircons shielded in garnet rather suggests that garnet nucleated and grew by cooling of a hybrid magma pool, resulting from the complete mixing of crust- and mantle-derived melts.