{"title":"一种用于乘性噪声去除的混合正则化子模型","authors":"T. T. T. Tran, C. Pham, D. Vo, Duc-Hoang Vo","doi":"10.35470/2226-4116-2021-10-1-40-50","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a variational method for restoring images corrupted by multiplicative noise. Computationally, we employ the alternating minimization method to solve our minimization problem. We also study the existence and uniqueness of the proposed problem. Finally, experimental results are provided to demonstrate the superiority of our proposed hybrid model and algorithm for image denoising in comparison with state-of-the-art methods.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A hybrid regularizers model for multiplicative noise removal\",\"authors\":\"T. T. T. Tran, C. Pham, D. Vo, Duc-Hoang Vo\",\"doi\":\"10.35470/2226-4116-2021-10-1-40-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a variational method for restoring images corrupted by multiplicative noise. Computationally, we employ the alternating minimization method to solve our minimization problem. We also study the existence and uniqueness of the proposed problem. Finally, experimental results are provided to demonstrate the superiority of our proposed hybrid model and algorithm for image denoising in comparison with state-of-the-art methods.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2021-10-1-40-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2021-10-1-40-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
A hybrid regularizers model for multiplicative noise removal
In this paper, we propose a variational method for restoring images corrupted by multiplicative noise. Computationally, we employ the alternating minimization method to solve our minimization problem. We also study the existence and uniqueness of the proposed problem. Finally, experimental results are provided to demonstrate the superiority of our proposed hybrid model and algorithm for image denoising in comparison with state-of-the-art methods.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.