{"title":"光学三醋酸纤维素薄膜在碱/酸溶液中的降解行为","authors":"Jian’an Wang, Xiushan Fan","doi":"10.1515/polyeng-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract In this research, the degradation behaviors of ramie-based cellulose triacetate (CTA) films in alkali or acid solutions at room temperature were assessed. Moreover, the attenuated total reflection infrared (ATR-IR), physicochemical properties testing, scanning electron microscope (SEM), and thermogravimetric analysis/differential scanning calorimeter (TG/DSC) were employed to evaluate the detailed degradation process of the CTA films, which were treated by alkali or acidic aqueous solutions. The research results demonstrated that the dominant reaction of CTA films in NaOH solution with various concentrations is deacetylation. Intriguingly, the degradation behaviors of CTA films in HCl depend on the concentration of acid. The CTA films were almost immune to HCl with the concentration less than 1 mol L−1. However, films were degraded directly when the concentration of acid was higher than 1 mol L−1. This study provides a theoretical basis and further understanding for the treatment of dumped CTA films at room temperature.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"43 1","pages":"567 - 575"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degradation behaviors of optical cellulose triacetate films in alkali/acid solutions\",\"authors\":\"Jian’an Wang, Xiushan Fan\",\"doi\":\"10.1515/polyeng-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this research, the degradation behaviors of ramie-based cellulose triacetate (CTA) films in alkali or acid solutions at room temperature were assessed. Moreover, the attenuated total reflection infrared (ATR-IR), physicochemical properties testing, scanning electron microscope (SEM), and thermogravimetric analysis/differential scanning calorimeter (TG/DSC) were employed to evaluate the detailed degradation process of the CTA films, which were treated by alkali or acidic aqueous solutions. The research results demonstrated that the dominant reaction of CTA films in NaOH solution with various concentrations is deacetylation. Intriguingly, the degradation behaviors of CTA films in HCl depend on the concentration of acid. The CTA films were almost immune to HCl with the concentration less than 1 mol L−1. However, films were degraded directly when the concentration of acid was higher than 1 mol L−1. This study provides a theoretical basis and further understanding for the treatment of dumped CTA films at room temperature.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":\"43 1\",\"pages\":\"567 - 575\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
The degradation behaviors of optical cellulose triacetate films in alkali/acid solutions
Abstract In this research, the degradation behaviors of ramie-based cellulose triacetate (CTA) films in alkali or acid solutions at room temperature were assessed. Moreover, the attenuated total reflection infrared (ATR-IR), physicochemical properties testing, scanning electron microscope (SEM), and thermogravimetric analysis/differential scanning calorimeter (TG/DSC) were employed to evaluate the detailed degradation process of the CTA films, which were treated by alkali or acidic aqueous solutions. The research results demonstrated that the dominant reaction of CTA films in NaOH solution with various concentrations is deacetylation. Intriguingly, the degradation behaviors of CTA films in HCl depend on the concentration of acid. The CTA films were almost immune to HCl with the concentration less than 1 mol L−1. However, films were degraded directly when the concentration of acid was higher than 1 mol L−1. This study provides a theoretical basis and further understanding for the treatment of dumped CTA films at room temperature.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.