硅晶片上GaN应力管理的PECVD SiNx钝化,击穿强度超过8MV/cm

Matthias Moser , Mamta Pradhan , Mohammed Alomari , Michael Heuken , Thomas Schmitt , Ingmar Kallfass , Joachim N. Burghartz
{"title":"硅晶片上GaN应力管理的PECVD SiNx钝化,击穿强度超过8MV/cm","authors":"Matthias Moser ,&nbsp;Mamta Pradhan ,&nbsp;Mohammed Alomari ,&nbsp;Michael Heuken ,&nbsp;Thomas Schmitt ,&nbsp;Ingmar Kallfass ,&nbsp;Joachim N. Burghartz","doi":"10.1016/j.pedc.2022.100032","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, multi-layer PECVD <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> and <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mrow><mi>SiO</mi></mrow><mi>y</mi></msub></math></span> passivations are developed featuring very high soft breakdown strength and tunable stress properties, which would allow for stress engineering and wafer bow minimization. AlGaN/GaN-on-Si wafers (150 mm) with very low initial bow (<span><math><mrow><mo>&lt;</mo><mn>5</mn></mrow></math></span> <span><math><mrow><mi>μ</mi></mrow></math></span>m) are processed in a CMOS compatible manner. The effect of the major processing steps, namely passivation and metal deposition, on the wafer bow is continuously monitored. In this process aimed at power devices, relatively thick passivation is needed (1.5 <span><math><mrow><mi>μ</mi></mrow></math></span>m), which would induce very high stresses on the wafer if a single-layer deposition is applied. Hence, deposition of multiple layers is explored through mechanical modelling and simulation, leading to a stress-free passivation. The optimized multi-layer dielectric consists of two different <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> single layers (referred to as T40 and R100), which have opposite stress properties, with T40 being tensile and R100 being compressive. By adjusting the thickness ratio of both layers and the number of total layers, mechanical stress within the multi-layer can be neutralized to achieve stress-free deposition. In addition, the optimization of the film properties includes the electrical properties of the passivation, and is designed primarily for high voltage applications. The developed <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> passivation has a soft breakdown strength with more than 8 MV/cm, and leakage currents below 1 nA/mm<sup>2</sup> up to soft breakdown. After dielectric development, Schottky and MIS device characteristics with <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> multi-layers are characterized in DC and pulse mode measurements. As measurements suggest, the developed passivation is suitable for GaN-on-Si HEMT applications.</p></div>","PeriodicalId":74483,"journal":{"name":"Power electronic devices and components","volume":"4 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PECVD SiNx passivation with more than 8 MV/cm breakdown strength for GaN-on-Si wafer stress management\",\"authors\":\"Matthias Moser ,&nbsp;Mamta Pradhan ,&nbsp;Mohammed Alomari ,&nbsp;Michael Heuken ,&nbsp;Thomas Schmitt ,&nbsp;Ingmar Kallfass ,&nbsp;Joachim N. Burghartz\",\"doi\":\"10.1016/j.pedc.2022.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, multi-layer PECVD <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> and <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mrow><mi>SiO</mi></mrow><mi>y</mi></msub></math></span> passivations are developed featuring very high soft breakdown strength and tunable stress properties, which would allow for stress engineering and wafer bow minimization. AlGaN/GaN-on-Si wafers (150 mm) with very low initial bow (<span><math><mrow><mo>&lt;</mo><mn>5</mn></mrow></math></span> <span><math><mrow><mi>μ</mi></mrow></math></span>m) are processed in a CMOS compatible manner. The effect of the major processing steps, namely passivation and metal deposition, on the wafer bow is continuously monitored. In this process aimed at power devices, relatively thick passivation is needed (1.5 <span><math><mrow><mi>μ</mi></mrow></math></span>m), which would induce very high stresses on the wafer if a single-layer deposition is applied. Hence, deposition of multiple layers is explored through mechanical modelling and simulation, leading to a stress-free passivation. The optimized multi-layer dielectric consists of two different <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> single layers (referred to as T40 and R100), which have opposite stress properties, with T40 being tensile and R100 being compressive. By adjusting the thickness ratio of both layers and the number of total layers, mechanical stress within the multi-layer can be neutralized to achieve stress-free deposition. In addition, the optimization of the film properties includes the electrical properties of the passivation, and is designed primarily for high voltage applications. The developed <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> passivation has a soft breakdown strength with more than 8 MV/cm, and leakage currents below 1 nA/mm<sup>2</sup> up to soft breakdown. After dielectric development, Schottky and MIS device characteristics with <span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span>/<span><math><msub><mtext>SiN</mtext><mi>x</mi></msub></math></span> multi-layers are characterized in DC and pulse mode measurements. As measurements suggest, the developed passivation is suitable for GaN-on-Si HEMT applications.</p></div>\",\"PeriodicalId\":74483,\"journal\":{\"name\":\"Power electronic devices and components\",\"volume\":\"4 \",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Power electronic devices and components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772370422000293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power electronic devices and components","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772370422000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,开发了多层PECVD SiNx/SiNx和SiNx/SiOy钝化材料,具有非常高的软击穿强度和可调的应力性能,这将允许应力工程和晶圆弯曲最小化。AlGaN/GaN-on-Si晶圆(150mm)具有非常低的初始弯曲(<5 μm),以CMOS兼容的方式加工。主要的加工步骤,即钝化和金属沉积,对晶圆弓的影响是连续监测的。在针对功率器件的工艺中,需要相对较厚的钝化(1.5 μm),如果采用单层沉积,则会在晶圆上产生非常高的应力。因此,通过机械建模和模拟来探索多层沉积,从而实现无应力钝化。优化后的多层介质由两种不同的SiNx单层组成(称为T40和R100),它们具有相反的应力性能,T40为拉伸,R100为压缩。通过调整两层的厚度比和总层数,可以中和多层内的机械应力,实现无应力沉积。此外,薄膜性能的优化包括钝化的电学性能,主要是为高压应用而设计的。所开发的SiNx/SiNx钝化具有大于8 MV/cm的软击穿强度,泄漏电流低于1 nA/mm2直至软击穿。在介质开发之后,在直流和脉冲模式测量中表征了SiNx/SiNx多层肖特基和MIS器件的特性。测量结果表明,开发的钝化适用于GaN-on-Si HEMT应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PECVD SiNx passivation with more than 8 MV/cm breakdown strength for GaN-on-Si wafer stress management

PECVD SiNx passivation with more than 8 MV/cm breakdown strength for GaN-on-Si wafer stress management

In this work, multi-layer PECVD SiNx/SiNx and SiNx/SiOy passivations are developed featuring very high soft breakdown strength and tunable stress properties, which would allow for stress engineering and wafer bow minimization. AlGaN/GaN-on-Si wafers (150 mm) with very low initial bow (<5 μm) are processed in a CMOS compatible manner. The effect of the major processing steps, namely passivation and metal deposition, on the wafer bow is continuously monitored. In this process aimed at power devices, relatively thick passivation is needed (1.5 μm), which would induce very high stresses on the wafer if a single-layer deposition is applied. Hence, deposition of multiple layers is explored through mechanical modelling and simulation, leading to a stress-free passivation. The optimized multi-layer dielectric consists of two different SiNx single layers (referred to as T40 and R100), which have opposite stress properties, with T40 being tensile and R100 being compressive. By adjusting the thickness ratio of both layers and the number of total layers, mechanical stress within the multi-layer can be neutralized to achieve stress-free deposition. In addition, the optimization of the film properties includes the electrical properties of the passivation, and is designed primarily for high voltage applications. The developed SiNx/SiNx passivation has a soft breakdown strength with more than 8 MV/cm, and leakage currents below 1 nA/mm2 up to soft breakdown. After dielectric development, Schottky and MIS device characteristics with SiNx/SiNx multi-layers are characterized in DC and pulse mode measurements. As measurements suggest, the developed passivation is suitable for GaN-on-Si HEMT applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Power electronic devices and components
Power electronic devices and components Hardware and Architecture, Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Safety, Risk, Reliability and Quality
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信