Xinye Wang, Xiaoran Jing, Yi Deng, Y. Nie, F. Xu, Yan Xu, Yi-Lei Zhao, J. Hunt, G. Montelione, T. Szyperski
{"title":"进化耦合饱和诱变:共同进化指导下鉴定影响纳加诺芽孢杆菌普鲁兰酶活性的远距离位点","authors":"Xinye Wang, Xiaoran Jing, Yi Deng, Y. Nie, F. Xu, Yan Xu, Yi-Lei Zhao, J. Hunt, G. Montelione, T. Szyperski","doi":"10.1002/1873-3468.13652","DOIUrl":null,"url":null,"abstract":"Pullulanases are well‐known debranching enzymes hydrolyzing α‐1,6‐glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis‐involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the ‘evolutionary coupling saturation mutagenesis’ (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13652","citationCount":"19","resultStr":"{\"title\":\"Evolutionary coupling saturation mutagenesis: Coevolution‐guided identification of distant sites influencing Bacillus naganoensis pullulanase activity\",\"authors\":\"Xinye Wang, Xiaoran Jing, Yi Deng, Y. Nie, F. Xu, Yan Xu, Yi-Lei Zhao, J. Hunt, G. Montelione, T. Szyperski\",\"doi\":\"10.1002/1873-3468.13652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pullulanases are well‐known debranching enzymes hydrolyzing α‐1,6‐glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis‐involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the ‘evolutionary coupling saturation mutagenesis’ (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.\",\"PeriodicalId\":50454,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1873-3468.13652\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.13652\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.13652","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pullulanases are well‐known debranching enzymes hydrolyzing α‐1,6‐glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis‐involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the ‘evolutionary coupling saturation mutagenesis’ (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.