{"title":"奇球的大小通过逆贝塞尔多项式的汉克尔行列式","authors":"S. Willerton","doi":"10.19086/da.12649","DOIUrl":null,"url":null,"abstract":"Magnitude is an invariant of metric spaces with origins in enriched category theory. Using potential theoretic methods, Barcelo and Carbery gave an algorithm for calculating the magnitude of any odd dimensional ball in Euclidean space, and they proved that it was a rational function of the radius of the ball. In this paper an explicit formula is given for the magnitude of each odd dimensional ball in terms of a ratio of Hankel determinants of reverse Bessel polynomials. This is done by finding a distribution on the ball which solves the weight equations. Using Schroder paths and a continued fraction expansion for the generating function of the reverse Bessel polynomials, combinatorial formulae are given for the numerator and denominator of the magnitude of each odd dimensional ball. These formulae are then used to prove facts about the magnitude such as its asymptotic behaviour as the radius of the ball grows.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials\",\"authors\":\"S. Willerton\",\"doi\":\"10.19086/da.12649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnitude is an invariant of metric spaces with origins in enriched category theory. Using potential theoretic methods, Barcelo and Carbery gave an algorithm for calculating the magnitude of any odd dimensional ball in Euclidean space, and they proved that it was a rational function of the radius of the ball. In this paper an explicit formula is given for the magnitude of each odd dimensional ball in terms of a ratio of Hankel determinants of reverse Bessel polynomials. This is done by finding a distribution on the ball which solves the weight equations. Using Schroder paths and a continued fraction expansion for the generating function of the reverse Bessel polynomials, combinatorial formulae are given for the numerator and denominator of the magnitude of each odd dimensional ball. These formulae are then used to prove facts about the magnitude such as its asymptotic behaviour as the radius of the ball grows.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/da.12649\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/da.12649","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials
Magnitude is an invariant of metric spaces with origins in enriched category theory. Using potential theoretic methods, Barcelo and Carbery gave an algorithm for calculating the magnitude of any odd dimensional ball in Euclidean space, and they proved that it was a rational function of the radius of the ball. In this paper an explicit formula is given for the magnitude of each odd dimensional ball in terms of a ratio of Hankel determinants of reverse Bessel polynomials. This is done by finding a distribution on the ball which solves the weight equations. Using Schroder paths and a continued fraction expansion for the generating function of the reverse Bessel polynomials, combinatorial formulae are given for the numerator and denominator of the magnitude of each odd dimensional ball. These formulae are then used to prove facts about the magnitude such as its asymptotic behaviour as the radius of the ball grows.
期刊介绍:
Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.