{"title":"双线性振荡积分沿抛物线的有界性","authors":"Guoliang Li, Junfeng Li","doi":"10.1017/S0013091523000032","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \\begin{equation*}\nT_\\beta(f, g)(x)=p.v.\\int_{{\\mathbb R}} f(x-t)g(x-t^{2})\\,{\\rm e}^{i |t|^{\\beta}}\\,\\frac{{\\rm d}t}{t}\n\\end{equation*}is set up, where β > 1 or β < 0, $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$ and $\\frac{1}{2}\\lt r\\lt\\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\\infty\\times L^2\\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"66 1","pages":"54 - 88"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The boundedness of the bilinear oscillatory integral along a parabola\",\"authors\":\"Guoliang Li, Junfeng Li\",\"doi\":\"10.1017/S0013091523000032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the $L^p(\\\\mathbb{R})\\\\times L^q(\\\\mathbb{R})\\\\rightarrow L^r(\\\\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \\\\begin{equation*}\\nT_\\\\beta(f, g)(x)=p.v.\\\\int_{{\\\\mathbb R}} f(x-t)g(x-t^{2})\\\\,{\\\\rm e}^{i |t|^{\\\\beta}}\\\\,\\\\frac{{\\\\rm d}t}{t}\\n\\\\end{equation*}is set up, where β > 1 or β < 0, $\\\\frac{1}{p}+\\\\frac{1}{q}=\\\\frac{1}{r}$ and $\\\\frac{1}{2}\\\\lt r\\\\lt\\\\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\\\\infty\\\\times L^2\\\\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"66 1\",\"pages\":\"54 - 88\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000032\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The boundedness of the bilinear oscillatory integral along a parabola
Abstract In this paper, the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \begin{equation*}
T_\beta(f, g)(x)=p.v.\int_{{\mathbb R}} f(x-t)g(x-t^{2})\,{\rm e}^{i |t|^{\beta}}\,\frac{{\rm d}t}{t}
\end{equation*}is set up, where β > 1 or β < 0, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $\frac{1}{2}\lt r\lt\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\infty\times L^2\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.