{"title":"双线性振荡积分沿抛物线的有界性","authors":"Guoliang Li, Junfeng Li","doi":"10.1017/S0013091523000032","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \\begin{equation*}\nT_\\beta(f, g)(x)=p.v.\\int_{{\\mathbb R}} f(x-t)g(x-t^{2})\\,{\\rm e}^{i |t|^{\\beta}}\\,\\frac{{\\rm d}t}{t}\n\\end{equation*}is set up, where β > 1 or β < 0, $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$ and $\\frac{1}{2}\\lt r\\lt\\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\\infty\\times L^2\\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The boundedness of the bilinear oscillatory integral along a parabola\",\"authors\":\"Guoliang Li, Junfeng Li\",\"doi\":\"10.1017/S0013091523000032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the $L^p(\\\\mathbb{R})\\\\times L^q(\\\\mathbb{R})\\\\rightarrow L^r(\\\\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \\\\begin{equation*}\\nT_\\\\beta(f, g)(x)=p.v.\\\\int_{{\\\\mathbb R}} f(x-t)g(x-t^{2})\\\\,{\\\\rm e}^{i |t|^{\\\\beta}}\\\\,\\\\frac{{\\\\rm d}t}{t}\\n\\\\end{equation*}is set up, where β > 1 or β < 0, $\\\\frac{1}{p}+\\\\frac{1}{q}=\\\\frac{1}{r}$ and $\\\\frac{1}{2}\\\\lt r\\\\lt\\\\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\\\\infty\\\\times L^2\\\\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The boundedness of the bilinear oscillatory integral along a parabola
Abstract In this paper, the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \begin{equation*}
T_\beta(f, g)(x)=p.v.\int_{{\mathbb R}} f(x-t)g(x-t^{2})\,{\rm e}^{i |t|^{\beta}}\,\frac{{\rm d}t}{t}
\end{equation*}is set up, where β > 1 or β < 0, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $\frac{1}{2}\lt r\lt\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\infty\times L^2\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.