{"title":"基于线性正则变换的相位检索","authors":"Yang Chen, Na Qu","doi":"10.1080/01630563.2022.2132511","DOIUrl":null,"url":null,"abstract":"Abstract The classical phase retrieval problem aims to recover an unknown function from the Fourier magnitudes. The linear canonical transform has a more generalized form of the well-known (fractional) Fourier transform and a wide range of engineering applications such as optics and quantum mechanism. In this paper, we consider the linear canonic phase retrieval problem of determining a function from the magnitudes of the linear canonic transforms. We show that a compactly supported function f can be determined, up to a global phase, from the magnitudes of multiple linear canonic transforms, where is a class of real unimodular matrices. It generalizes the results of phase retrieval from multiple fractional Fourier transforms. On the other hand, we show that a compactly supported function f can be determined, up to a global phase, from the interference linear canonic magnitudes and where Moreover, if the ambiguity of conjugate reflection is taken into account, the compactly supported function f can be determined, up to a rotation and conjugate reflection, from the linear canonic magnitudes and","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"43 1","pages":"1760 - 1777"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phase Retrieval from Linear Canonical Transforms\",\"authors\":\"Yang Chen, Na Qu\",\"doi\":\"10.1080/01630563.2022.2132511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The classical phase retrieval problem aims to recover an unknown function from the Fourier magnitudes. The linear canonical transform has a more generalized form of the well-known (fractional) Fourier transform and a wide range of engineering applications such as optics and quantum mechanism. In this paper, we consider the linear canonic phase retrieval problem of determining a function from the magnitudes of the linear canonic transforms. We show that a compactly supported function f can be determined, up to a global phase, from the magnitudes of multiple linear canonic transforms, where is a class of real unimodular matrices. It generalizes the results of phase retrieval from multiple fractional Fourier transforms. On the other hand, we show that a compactly supported function f can be determined, up to a global phase, from the interference linear canonic magnitudes and where Moreover, if the ambiguity of conjugate reflection is taken into account, the compactly supported function f can be determined, up to a rotation and conjugate reflection, from the linear canonic magnitudes and\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"43 1\",\"pages\":\"1760 - 1777\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2022.2132511\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2022.2132511","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Abstract The classical phase retrieval problem aims to recover an unknown function from the Fourier magnitudes. The linear canonical transform has a more generalized form of the well-known (fractional) Fourier transform and a wide range of engineering applications such as optics and quantum mechanism. In this paper, we consider the linear canonic phase retrieval problem of determining a function from the magnitudes of the linear canonic transforms. We show that a compactly supported function f can be determined, up to a global phase, from the magnitudes of multiple linear canonic transforms, where is a class of real unimodular matrices. It generalizes the results of phase retrieval from multiple fractional Fourier transforms. On the other hand, we show that a compactly supported function f can be determined, up to a global phase, from the interference linear canonic magnitudes and where Moreover, if the ambiguity of conjugate reflection is taken into account, the compactly supported function f can be determined, up to a rotation and conjugate reflection, from the linear canonic magnitudes and
期刊介绍:
Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal.
Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.