聚偏氟乙烯/表面功能化丝光沸石混合基质膜去除刚果红染料:有机硅烷种类的影响

Q3 Materials Science
Khairul Umam , Fuja Sagita , Edi Pramono , Mia Ledyastuti , Grandprix T.M. Kadja , Cynthia L. Radiman
{"title":"聚偏氟乙烯/表面功能化丝光沸石混合基质膜去除刚果红染料:有机硅烷种类的影响","authors":"Khairul Umam ,&nbsp;Fuja Sagita ,&nbsp;Edi Pramono ,&nbsp;Mia Ledyastuti ,&nbsp;Grandprix T.M. Kadja ,&nbsp;Cynthia L. Radiman","doi":"10.1016/j.jciso.2023.100093","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the preparation of PVDF hybrid membranes mixed with natural zeolite mordenite, which are functionalized with various organosilanes, i.e., 3-aminopropyl-triethoxysilane (APTES), 3-ethylenediaminopropyl-trimethoxysilane (EDAPTMS), and 3-mercapto-propyl-trimethoxysilane (MPTMS) compounds. The addition of mordenite-MPTMS increased the β fraction on the hybrid membrane surfaces and improved the membrane hydrophilicity. The shape of the macropores in PME tends to be round, with the largest size among other hybrid membrane macropores resulting in the highest porosity. The congo red dye is very well filtered by all PVDF and hybrid membranes, with a rejection value of around 99%. The increase in porosity was parallel to the water flux value in the hybrid membrane, which is PME produces the highest water flux value. The degree of membrane pores fouling during the filtration of the congo red dye was successfully reduced by the addition of organosilane-modified mordenite.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"11 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyvinylidenefluoride (PVDF)/surface functionalized-mordenite mixed matrix membrane for congo red dyes removal: Effect of types of organosilane\",\"authors\":\"Khairul Umam ,&nbsp;Fuja Sagita ,&nbsp;Edi Pramono ,&nbsp;Mia Ledyastuti ,&nbsp;Grandprix T.M. Kadja ,&nbsp;Cynthia L. Radiman\",\"doi\":\"10.1016/j.jciso.2023.100093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the preparation of PVDF hybrid membranes mixed with natural zeolite mordenite, which are functionalized with various organosilanes, i.e., 3-aminopropyl-triethoxysilane (APTES), 3-ethylenediaminopropyl-trimethoxysilane (EDAPTMS), and 3-mercapto-propyl-trimethoxysilane (MPTMS) compounds. The addition of mordenite-MPTMS increased the β fraction on the hybrid membrane surfaces and improved the membrane hydrophilicity. The shape of the macropores in PME tends to be round, with the largest size among other hybrid membrane macropores resulting in the highest porosity. The congo red dye is very well filtered by all PVDF and hybrid membranes, with a rejection value of around 99%. The increase in porosity was parallel to the water flux value in the hybrid membrane, which is PME produces the highest water flux value. The degree of membrane pores fouling during the filtration of the congo red dye was successfully reduced by the addition of organosilane-modified mordenite.</p></div>\",\"PeriodicalId\":73541,\"journal\":{\"name\":\"JCIS open\",\"volume\":\"11 \",\"pages\":\"Article 100093\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCIS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666934X2300020X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X2300020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了天然沸石丝光沸石混合PVDF杂化膜的制备,并采用多种有机硅烷,即3-氨基丙基-三乙氧基硅烷(APTES), 3-乙二氨基丙基-三甲氧基硅烷(EDAPTMS)和3-巯基-丙基-三甲氧基硅烷(MPTMS)化合物进行功能化。丝光沸石- mptms的加入增加了杂化膜表面的β组分,改善了膜的亲水性。PME的大孔呈圆形,在杂化膜大孔中尺寸最大,孔隙率最高。刚果红染料被所有PVDF和混合膜过滤得很好,截留值约为99%。孔隙率的增加与混合膜的水通量值平行,其中PME产生的水通量值最高。通过添加有机硅烷改性丝光沸石,成功地降低了刚果红染料过滤过程中膜孔的污染程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyvinylidenefluoride (PVDF)/surface functionalized-mordenite mixed matrix membrane for congo red dyes removal: Effect of types of organosilane

Polyvinylidenefluoride (PVDF)/surface functionalized-mordenite mixed matrix membrane for congo red dyes removal: Effect of types of organosilane

This study examines the preparation of PVDF hybrid membranes mixed with natural zeolite mordenite, which are functionalized with various organosilanes, i.e., 3-aminopropyl-triethoxysilane (APTES), 3-ethylenediaminopropyl-trimethoxysilane (EDAPTMS), and 3-mercapto-propyl-trimethoxysilane (MPTMS) compounds. The addition of mordenite-MPTMS increased the β fraction on the hybrid membrane surfaces and improved the membrane hydrophilicity. The shape of the macropores in PME tends to be round, with the largest size among other hybrid membrane macropores resulting in the highest porosity. The congo red dye is very well filtered by all PVDF and hybrid membranes, with a rejection value of around 99%. The increase in porosity was parallel to the water flux value in the hybrid membrane, which is PME produces the highest water flux value. The degree of membrane pores fouling during the filtration of the congo red dye was successfully reduced by the addition of organosilane-modified mordenite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信