一类分数阶非线性隐式耦合系统解的存在性和Hyers-Ulam稳定性

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
A. Zada, A. Ali, U. Riaz
{"title":"一类分数阶非线性隐式耦合系统解的存在性和Hyers-Ulam稳定性","authors":"A. Zada, A. Ali, U. Riaz","doi":"10.1515/ijnsns-2022-0250","DOIUrl":null,"url":null,"abstract":"Abstract In this typescript, we study system of nonlinear implicit coupled differential equations of arbitrary (non–integer) order having nonlocal boundary conditions on closed interval [0, 1] with Caputo fractional derivative. We establish sufficient conditions for the existence, at least one and a unique solution of the proposed coupled system with the help of Krasnoselskii’s fixed point theorem and Banach contraction principle. Moreover, we scrutinize the Hyers–Ulam stability for the considered problem. We present examples to illustrate our main results.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and Hyers–Ulam stability of solutions to a nonlinear implicit coupled system of fractional order\",\"authors\":\"A. Zada, A. Ali, U. Riaz\",\"doi\":\"10.1515/ijnsns-2022-0250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this typescript, we study system of nonlinear implicit coupled differential equations of arbitrary (non–integer) order having nonlocal boundary conditions on closed interval [0, 1] with Caputo fractional derivative. We establish sufficient conditions for the existence, at least one and a unique solution of the proposed coupled system with the help of Krasnoselskii’s fixed point theorem and Banach contraction principle. Moreover, we scrutinize the Hyers–Ulam stability for the considered problem. We present examples to illustrate our main results.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2022-0250\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0250","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了闭区间[0,1]上具有Caputo分数阶导数的具有非局部边界条件的任意(非整数)阶非线性隐式耦合微分方程系统。利用Krasnoselskii不动点定理和Banach收缩原理,建立了该耦合系统存在的充分条件,并给出了至少一个解和唯一解。此外,我们仔细研究了所考虑问题的Hyers-Ulam稳定性。我们给出一些例子来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Hyers–Ulam stability of solutions to a nonlinear implicit coupled system of fractional order
Abstract In this typescript, we study system of nonlinear implicit coupled differential equations of arbitrary (non–integer) order having nonlocal boundary conditions on closed interval [0, 1] with Caputo fractional derivative. We establish sufficient conditions for the existence, at least one and a unique solution of the proposed coupled system with the help of Krasnoselskii’s fixed point theorem and Banach contraction principle. Moreover, we scrutinize the Hyers–Ulam stability for the considered problem. We present examples to illustrate our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信