{"title":"常曲率空间中的离散等周问题","authors":"Bushra Basit, Zsolt Lángi","doi":"10.1112/mtk.12175","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to prove isoperimetric inequalities for simplices and polytopes with <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d+2$</annotation>\n </semantics></math> vertices in Euclidean, spherical and hyperbolic <i>d</i>-space. In particular, we find the minimal volume <i>d</i>-dimensional hyperbolic simplices and spherical tetrahedra of a given inradius. Furthermore, we investigate the properties of maximal volume spherical and hyperbolic polytopes with <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d+2$</annotation>\n </semantics></math> vertices with a given circumradius, and the hyperbolic polytopes with <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d+2$</annotation>\n </semantics></math> vertices with a given inradius and having a minimal volume or minimal total edge length. Finally, for any <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$1 \\leqslant k \\leqslant d$</annotation>\n </semantics></math>, we investigate the properties of Euclidean simplices and polytopes with <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d+2$</annotation>\n </semantics></math> vertices having a fixed inradius and a minimal volume of its <i>k</i>-skeleton. The main tool of our investigation is Euclidean, spherical and hyperbolic Steiner symmetrization.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12175","citationCount":"0","resultStr":"{\"title\":\"Discrete isoperimetric problems in spaces of constant curvature\",\"authors\":\"Bushra Basit, Zsolt Lángi\",\"doi\":\"10.1112/mtk.12175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to prove isoperimetric inequalities for simplices and polytopes with <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d+2$</annotation>\\n </semantics></math> vertices in Euclidean, spherical and hyperbolic <i>d</i>-space. In particular, we find the minimal volume <i>d</i>-dimensional hyperbolic simplices and spherical tetrahedra of a given inradius. Furthermore, we investigate the properties of maximal volume spherical and hyperbolic polytopes with <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d+2$</annotation>\\n </semantics></math> vertices with a given circumradius, and the hyperbolic polytopes with <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d+2$</annotation>\\n </semantics></math> vertices with a given inradius and having a minimal volume or minimal total edge length. Finally, for any <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$1 \\\\leqslant k \\\\leqslant d$</annotation>\\n </semantics></math>, we investigate the properties of Euclidean simplices and polytopes with <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d+2$</annotation>\\n </semantics></math> vertices having a fixed inradius and a minimal volume of its <i>k</i>-skeleton. The main tool of our investigation is Euclidean, spherical and hyperbolic Steiner symmetrization.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12175\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12175","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是证明欧几里德空间、球面空间和双曲空间中具有d+2 $d+2$顶点的简单体和多面体的等周不等式。特别地,我们找到了给定半径的最小体积的d维双曲简单体和球面四面体。此外,我们研究了具有给定周半径的d+2个$d+2$顶点的最大体积球面和双曲多边形,以及具有给定半径且具有最小体积或最小总边长的d+2 $d+2$顶点的双曲多边形的性质。最后,对于任意1±k±d $1 \leqslant k \leqslant d$,我们研究了具有固定半径和最小k -骨架体积的d+2个$d+2$顶点的欧几里得简单体和多体的性质。我们研究的主要工具是欧几里得对称、球面对称和双曲斯坦纳对称。
Discrete isoperimetric problems in spaces of constant curvature
The aim of this paper is to prove isoperimetric inequalities for simplices and polytopes with vertices in Euclidean, spherical and hyperbolic d-space. In particular, we find the minimal volume d-dimensional hyperbolic simplices and spherical tetrahedra of a given inradius. Furthermore, we investigate the properties of maximal volume spherical and hyperbolic polytopes with vertices with a given circumradius, and the hyperbolic polytopes with vertices with a given inradius and having a minimal volume or minimal total edge length. Finally, for any , we investigate the properties of Euclidean simplices and polytopes with vertices having a fixed inradius and a minimal volume of its k-skeleton. The main tool of our investigation is Euclidean, spherical and hyperbolic Steiner symmetrization.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.