一类具有空间常数变符号曲率的宇宙学模型

IF 0.5 4区 数学 Q3 MATHEMATICS
M. S'anchez
{"title":"一类具有空间常数变符号曲率的宇宙学模型","authors":"M. S'anchez","doi":"10.4171/pm/2099","DOIUrl":null,"url":null,"abstract":"We construct globally hyperbolic spacetimes such that each slice $\\{t=t_0\\}$ of the universal time $t$ is a model space of constant curvature $k(t_0)$ which may not only vary with $t_0\\in\\mathbb{R}$ but also change its sign. The metric is smooth and slightly different to FLRW spacetimes, namely, $g=-dt^2+dr^2+ S_{k(t)}^2(r) g_{\\mathbb{S}^{n-1}}$, where $g_{\\mathbb{S}^{n-1}}$ is the metric of the standard sphere, $S_{k(t)}(r)=\\sin(\\sqrt{k(t)}\\, r)/\\sqrt{k(t)}$ when $k(t)\\geq 0$ and $S_{k(t)}(r)=\\sinh(\\sqrt{-k(t)}\\, r)/\\sqrt{-k(t)}$ when $k(t)\\leq 0$. In the open case, the $t$-slices are (non-compact) Cauchy hypersurfaces of curvature $k(t)\\leq 0$, thus homeomorphic to $\\mathbb{R}^n$; a typical example is $k(t)=-t^2$ (i.e., $S_{k(t)}(r)=\\sinh(tr)/t$). In the closed case, $k(t)>0$ somewhere, a slight extension of the class shows how the topology of the $t$-slices changes. This makes at least one comoving observer to disappear in finite time $t$ showing some similarities with an inflationary expansion. Anyway, the spacetime is foliated by Cauchy hypersurfaces homeomorphic to spheres, not all of them $t$-slices.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A class of cosmological models with spatially constant sign-changing curvature\",\"authors\":\"M. S'anchez\",\"doi\":\"10.4171/pm/2099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct globally hyperbolic spacetimes such that each slice $\\\\{t=t_0\\\\}$ of the universal time $t$ is a model space of constant curvature $k(t_0)$ which may not only vary with $t_0\\\\in\\\\mathbb{R}$ but also change its sign. The metric is smooth and slightly different to FLRW spacetimes, namely, $g=-dt^2+dr^2+ S_{k(t)}^2(r) g_{\\\\mathbb{S}^{n-1}}$, where $g_{\\\\mathbb{S}^{n-1}}$ is the metric of the standard sphere, $S_{k(t)}(r)=\\\\sin(\\\\sqrt{k(t)}\\\\, r)/\\\\sqrt{k(t)}$ when $k(t)\\\\geq 0$ and $S_{k(t)}(r)=\\\\sinh(\\\\sqrt{-k(t)}\\\\, r)/\\\\sqrt{-k(t)}$ when $k(t)\\\\leq 0$. In the open case, the $t$-slices are (non-compact) Cauchy hypersurfaces of curvature $k(t)\\\\leq 0$, thus homeomorphic to $\\\\mathbb{R}^n$; a typical example is $k(t)=-t^2$ (i.e., $S_{k(t)}(r)=\\\\sinh(tr)/t$). In the closed case, $k(t)>0$ somewhere, a slight extension of the class shows how the topology of the $t$-slices changes. This makes at least one comoving observer to disappear in finite time $t$ showing some similarities with an inflationary expansion. Anyway, the spacetime is foliated by Cauchy hypersurfaces homeomorphic to spheres, not all of them $t$-slices.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2099\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们构造了全局双曲时空,使得普遍时间$t$的每个切片$\{t=t_0\}$都是常曲率的模型空间$k(t_0)$,它不仅可以随$t_0\in\mathbb{R}$而变化,而且可以改变其符号。该度量是光滑的,与FLRW时空略有不同,即$g=-dt^2+dr^2+S_{k(t)}^2(R)g_,其中$g_{\mathbb{S}^{n-1}}$是标准球体的度量,$S_{k(t)}(r)=\sin(\sqrt{k)}\,r)/\sqrt{k。在开放情况下,$t$-片是曲率为$k(t)\leq 0$的(非紧)柯西超曲面,因此同胚于$\mathbb{R}^n$;一个典型的例子是$k(t)=-t^2$(即$S_{k(t)}(r)=\sinh(tr)/t$)。在闭合的情况下,$k(t)>0$某处,类的一个轻微扩展显示了$t$切片的拓扑结构是如何变化的。这使得至少有一个共同的观察者在有限的时间内消失$t$,显示出与通货膨胀扩张的一些相似之处。总之,时空是由同胚于球体的柯西超曲面叶化的,而不是所有的$t$-切片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of cosmological models with spatially constant sign-changing curvature
We construct globally hyperbolic spacetimes such that each slice $\{t=t_0\}$ of the universal time $t$ is a model space of constant curvature $k(t_0)$ which may not only vary with $t_0\in\mathbb{R}$ but also change its sign. The metric is smooth and slightly different to FLRW spacetimes, namely, $g=-dt^2+dr^2+ S_{k(t)}^2(r) g_{\mathbb{S}^{n-1}}$, where $g_{\mathbb{S}^{n-1}}$ is the metric of the standard sphere, $S_{k(t)}(r)=\sin(\sqrt{k(t)}\, r)/\sqrt{k(t)}$ when $k(t)\geq 0$ and $S_{k(t)}(r)=\sinh(\sqrt{-k(t)}\, r)/\sqrt{-k(t)}$ when $k(t)\leq 0$. In the open case, the $t$-slices are (non-compact) Cauchy hypersurfaces of curvature $k(t)\leq 0$, thus homeomorphic to $\mathbb{R}^n$; a typical example is $k(t)=-t^2$ (i.e., $S_{k(t)}(r)=\sinh(tr)/t$). In the closed case, $k(t)>0$ somewhere, a slight extension of the class shows how the topology of the $t$-slices changes. This makes at least one comoving observer to disappear in finite time $t$ showing some similarities with an inflationary expansion. Anyway, the spacetime is foliated by Cauchy hypersurfaces homeomorphic to spheres, not all of them $t$-slices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信