环境温度对混合注入CO2 + O2的旋流氧枪射流特性的影响

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Feng, K. Dong, R. Zhu, Tao Lin, Jianfeng Dong, Tao Xia, Xin Ren
{"title":"环境温度对混合注入CO2 + O2的旋流氧枪射流特性的影响","authors":"Chao Feng, K. Dong, R. Zhu, Tao Lin, Jianfeng Dong, Tao Xia, Xin Ren","doi":"10.1515/htmp-2022-0239","DOIUrl":null,"url":null,"abstract":"Abstract O2 mixed with CO2 gas has been successfully applied in converter smelting; however, up to now, there have been few studies regarding the jet characteristics of the mixed injection of the swirl oxygen lance nozzle and the influence of different ambient temperature conditions on jet characteristics compared with common nozzles. In this study, Fluent software was used to simulate the jet characteristics of a four-hole common nozzle and a four-hole swirl nozzle under four different ambient temperature conditions to inject 95% O2 + 5% CO2 and analyze the influence of different ambient temperatures on nozzle-jet characteristics. The results show that with an increase in the ambient temperature, the jet-axis velocity and nozzle centerline speed increase. Under the same distance condition, the distance between the maximum radial velocity point of the jet and the centerline of the nozzle becomes larger, with a velocity greater than that of the swirl nozzle. However, the influence of the ambient temperature on the offset of the jet centerline is small. With an increase in the ambient temperature and distance, the jet-axis temperature increases and the temperature of the nozzle centerline decreases. The research results can provide a theoretical reference for the optimal design of a CO2 + O2 swirl oxygen lance nozzle.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"41 1","pages":"635 - 649"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ambient temperature on the jet characteristics of a swirl oxygen lance with mixed injection of CO2 + O2\",\"authors\":\"Chao Feng, K. Dong, R. Zhu, Tao Lin, Jianfeng Dong, Tao Xia, Xin Ren\",\"doi\":\"10.1515/htmp-2022-0239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract O2 mixed with CO2 gas has been successfully applied in converter smelting; however, up to now, there have been few studies regarding the jet characteristics of the mixed injection of the swirl oxygen lance nozzle and the influence of different ambient temperature conditions on jet characteristics compared with common nozzles. In this study, Fluent software was used to simulate the jet characteristics of a four-hole common nozzle and a four-hole swirl nozzle under four different ambient temperature conditions to inject 95% O2 + 5% CO2 and analyze the influence of different ambient temperatures on nozzle-jet characteristics. The results show that with an increase in the ambient temperature, the jet-axis velocity and nozzle centerline speed increase. Under the same distance condition, the distance between the maximum radial velocity point of the jet and the centerline of the nozzle becomes larger, with a velocity greater than that of the swirl nozzle. However, the influence of the ambient temperature on the offset of the jet centerline is small. With an increase in the ambient temperature and distance, the jet-axis temperature increases and the temperature of the nozzle centerline decreases. The research results can provide a theoretical reference for the optimal design of a CO2 + O2 swirl oxygen lance nozzle.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\"41 1\",\"pages\":\"635 - 649\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0239\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要O2与CO2混合气体已成功应用于转炉冶炼;然而,到目前为止,与普通喷嘴相比,关于涡流氧枪喷嘴混合喷射的射流特性以及不同环境温度条件对射流特性的影响的研究还很少。本研究利用Fluent软件模拟了四孔普通喷嘴和四孔旋流喷嘴在四种不同环境温度条件下注入95% O2 + 5% CO2的射流特性,分析了不同环境温度对喷嘴射流特性的影响。结果表明:随着环境温度的升高,射流轴向速度和喷嘴中心线速度增大;在相同距离条件下,射流最大径向速度点与喷嘴中心线之间的距离变大,速度大于旋流喷嘴。而环境温度对射流中心线偏移量的影响较小。随着环境温度和距离的增加,射流轴温度升高,喷嘴中心线温度降低。研究结果可为CO2 + O2旋流氧枪喷管的优化设计提供理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of ambient temperature on the jet characteristics of a swirl oxygen lance with mixed injection of CO2 + O2
Abstract O2 mixed with CO2 gas has been successfully applied in converter smelting; however, up to now, there have been few studies regarding the jet characteristics of the mixed injection of the swirl oxygen lance nozzle and the influence of different ambient temperature conditions on jet characteristics compared with common nozzles. In this study, Fluent software was used to simulate the jet characteristics of a four-hole common nozzle and a four-hole swirl nozzle under four different ambient temperature conditions to inject 95% O2 + 5% CO2 and analyze the influence of different ambient temperatures on nozzle-jet characteristics. The results show that with an increase in the ambient temperature, the jet-axis velocity and nozzle centerline speed increase. Under the same distance condition, the distance between the maximum radial velocity point of the jet and the centerline of the nozzle becomes larger, with a velocity greater than that of the swirl nozzle. However, the influence of the ambient temperature on the offset of the jet centerline is small. With an increase in the ambient temperature and distance, the jet-axis temperature increases and the temperature of the nozzle centerline decreases. The research results can provide a theoretical reference for the optimal design of a CO2 + O2 swirl oxygen lance nozzle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature Materials and Processes
High Temperature Materials and Processes 工程技术-材料科学:综合
CiteScore
2.50
自引率
0.00%
发文量
42
审稿时长
3.9 months
期刊介绍: High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities. Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信