谱任意符号模式矩阵的几何构造及2n猜想

IF 0.4 4区 数学 Q4 MATHEMATICS
D. Jadhav, R. Deore
{"title":"谱任意符号模式矩阵的几何构造及2n猜想","authors":"D. Jadhav, R. Deore","doi":"10.21136/CMJ.2023.0132-22","DOIUrl":null,"url":null,"abstract":"We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2n-conjecture. We determine that the 2n-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n − 1 nonzero entries.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"565 - 580"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric construction for spectrally arbitrary sign pattern matrices and the 2n-conjecture\",\"authors\":\"D. Jadhav, R. Deore\",\"doi\":\"10.21136/CMJ.2023.0132-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2n-conjecture. We determine that the 2n-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n − 1 nonzero entries.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"565 - 580\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0132-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0132-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种研究给定符号模式矩阵谱任意性的几何方法。该方法还为给定特征多项式的矩阵实现提供了一种计算方法。我们也给出了2n猜想的部分答案。对于具有至少n−1个非零元素的列或行的谱任意模式,我们确定了2n猜想成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric construction for spectrally arbitrary sign pattern matrices and the 2n-conjecture
We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2n-conjecture. We determine that the 2n-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n − 1 nonzero entries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信