人类作为移动机器人的寻路者,使用指示式导航

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alessandro Antonucci, Paolo Bevilacqua, Stefano Leonardi, Luigi Paolopoli, Daniele Fontanelli
{"title":"人类作为移动机器人的寻路者,使用指示式导航","authors":"Alessandro Antonucci,&nbsp;Paolo Bevilacqua,&nbsp;Stefano Leonardi,&nbsp;Luigi Paolopoli,&nbsp;Daniele Fontanelli","doi":"10.1007/s10514-023-10125-5","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most important barriers towards a widespread use of mobile robots in unstructured, human populated and possibly a-priori unknown work environments is the ability to plan a safe path. In this paper, we propose to delegate this activity to a human operator that walks in front of the robot marking with her/his footsteps the path to be followed. The implementation of this approach requires a high degree of robustness in locating the specific person to be followed (the <i>path-finder</i>). We propose a three phases approach to fulfil this goal: 1. Identification and tracking of the person in the image space, 2. Sensor fusion between camera data and laser sensors, 3. Point interpolation with continuous curvature paths. The approach is described in the paper and extensively validated with experimental results.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 8","pages":"1255 - 1273"},"PeriodicalIF":3.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10125-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Humans as path-finders for mobile robots using teach-by-showing navigation\",\"authors\":\"Alessandro Antonucci,&nbsp;Paolo Bevilacqua,&nbsp;Stefano Leonardi,&nbsp;Luigi Paolopoli,&nbsp;Daniele Fontanelli\",\"doi\":\"10.1007/s10514-023-10125-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the most important barriers towards a widespread use of mobile robots in unstructured, human populated and possibly a-priori unknown work environments is the ability to plan a safe path. In this paper, we propose to delegate this activity to a human operator that walks in front of the robot marking with her/his footsteps the path to be followed. The implementation of this approach requires a high degree of robustness in locating the specific person to be followed (the <i>path-finder</i>). We propose a three phases approach to fulfil this goal: 1. Identification and tracking of the person in the image space, 2. Sensor fusion between camera data and laser sensors, 3. Point interpolation with continuous curvature paths. The approach is described in the paper and extensively validated with experimental results.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"47 8\",\"pages\":\"1255 - 1273\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-023-10125-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10125-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10125-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在非结构化、人口密集和可能先验未知的工作环境中广泛使用移动机器人的最重要障碍之一是规划安全路径的能力。在本文中,我们建议将这项活动委托给一名人类操作员,该操作员走在机器人前面,用她/他的脚步标记要遵循的路径。这种方法的实现需要在定位要跟随的特定人员(寻路者)方面具有高度的健壮性。我们建议分三个阶段实现这一目标:1 .图像空间中人的识别与跟踪;2 .相机数据与激光传感器的融合;具有连续曲率路径的点插值。本文对该方法进行了描述,并用实验结果进行了广泛的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Humans as path-finders for mobile robots using teach-by-showing navigation

Humans as path-finders for mobile robots using teach-by-showing navigation

One of the most important barriers towards a widespread use of mobile robots in unstructured, human populated and possibly a-priori unknown work environments is the ability to plan a safe path. In this paper, we propose to delegate this activity to a human operator that walks in front of the robot marking with her/his footsteps the path to be followed. The implementation of this approach requires a high degree of robustness in locating the specific person to be followed (the path-finder). We propose a three phases approach to fulfil this goal: 1. Identification and tracking of the person in the image space, 2. Sensor fusion between camera data and laser sensors, 3. Point interpolation with continuous curvature paths. The approach is described in the paper and extensively validated with experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信