{"title":"非碳吸附剂对癸烷的吸附和解吸","authors":"Jeongmin Park, Sang-Sup Lee","doi":"10.5572/ajae.2021.023","DOIUrl":null,"url":null,"abstract":"<div><p>A high concentration of volatile organic compounds (VOCs) is emitted during dry cleaning processes. Although carbonaceous materials have been widely tested for the control of VOC emission, there is a risk of fire when a large amount of VOCs is contained. Non-carbon adsorbents such as KIT-6, SBA-15, MCM-41, X-type zeolites, Y-type zeolites, aluminum silicate, and activated alumina are therefore tested in this study for the adsorption and desorption of decane which is a main constituent of VOCs emitted during dry cleaning. The adsorbents were evaluated under two conditions with and without the injection of water vapor (20% rh) using a fixed-bed reactor system. Without the injection of water vapor, KIT-6 showed the highest decane adsorption capacity, and activated alumina showed the highest decane desorption efficiency. It was also found that the mesopore volume of the adsorbent was related to its decane adsorption capacity, whereas its peak pore diameter was closely related to its decane desorption efficiency. KIT-6 showed very similar decane adsorption and desorption performance in both cases with and without the injection of water vapor. However, the decane desorp-tion efficiency of activated alumina significantly decreased with the injection of water vapor.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and Desorption of Decane Using Non-Carbon Adsorbents\",\"authors\":\"Jeongmin Park, Sang-Sup Lee\",\"doi\":\"10.5572/ajae.2021.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A high concentration of volatile organic compounds (VOCs) is emitted during dry cleaning processes. Although carbonaceous materials have been widely tested for the control of VOC emission, there is a risk of fire when a large amount of VOCs is contained. Non-carbon adsorbents such as KIT-6, SBA-15, MCM-41, X-type zeolites, Y-type zeolites, aluminum silicate, and activated alumina are therefore tested in this study for the adsorption and desorption of decane which is a main constituent of VOCs emitted during dry cleaning. The adsorbents were evaluated under two conditions with and without the injection of water vapor (20% rh) using a fixed-bed reactor system. Without the injection of water vapor, KIT-6 showed the highest decane adsorption capacity, and activated alumina showed the highest decane desorption efficiency. It was also found that the mesopore volume of the adsorbent was related to its decane adsorption capacity, whereas its peak pore diameter was closely related to its decane desorption efficiency. KIT-6 showed very similar decane adsorption and desorption performance in both cases with and without the injection of water vapor. However, the decane desorp-tion efficiency of activated alumina significantly decreased with the injection of water vapor.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.5572/ajae.2021.023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.5572/ajae.2021.023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorption and Desorption of Decane Using Non-Carbon Adsorbents
A high concentration of volatile organic compounds (VOCs) is emitted during dry cleaning processes. Although carbonaceous materials have been widely tested for the control of VOC emission, there is a risk of fire when a large amount of VOCs is contained. Non-carbon adsorbents such as KIT-6, SBA-15, MCM-41, X-type zeolites, Y-type zeolites, aluminum silicate, and activated alumina are therefore tested in this study for the adsorption and desorption of decane which is a main constituent of VOCs emitted during dry cleaning. The adsorbents were evaluated under two conditions with and without the injection of water vapor (20% rh) using a fixed-bed reactor system. Without the injection of water vapor, KIT-6 showed the highest decane adsorption capacity, and activated alumina showed the highest decane desorption efficiency. It was also found that the mesopore volume of the adsorbent was related to its decane adsorption capacity, whereas its peak pore diameter was closely related to its decane desorption efficiency. KIT-6 showed very similar decane adsorption and desorption performance in both cases with and without the injection of water vapor. However, the decane desorp-tion efficiency of activated alumina significantly decreased with the injection of water vapor.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.