{"title":"影响电缆绝缘内部空腔缺陷局部放电发生的参数","authors":"Abdelkader Elagoun, T. Seghier","doi":"10.29354/diag/166378","DOIUrl":null,"url":null,"abstract":"The electrical cable reliability is largely linked to the state of its insulation, which can be threatened by the partial discharges (PDs) activity. This phenomenon is localized in defects created within insulation during the manufacture process and the cable installation. The cavity defect is among the most known defects within the insulating material filled with different gases and having various forms. Under electrical stress, the PDs occur and lead with time to a cable failure. The PDs simulation in cavity defect within cable insulation has became an important tool for a complementary understanding of the experimental task. The plasma model has been considered in last decade as an alternative to describe physically and chemically the PDs mechanism versus the other models such as the capacitance, conductance model. Using plasma model our work aims to simulate the PDs in cavity defect within cable insulation by showing the parameters influence such as the type of gas contained in the cavity, the voltage magnitude and frequency imposed on the insulation on their occurrence through its occurrence mechanisms. This helps to assess the PDs severity on the insulation system to carry out its diagnosis and therefore to have an effective reliability of cable.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters that influence the partial discharges occurrence in cavity defect within electrical cable insulation\",\"authors\":\"Abdelkader Elagoun, T. Seghier\",\"doi\":\"10.29354/diag/166378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical cable reliability is largely linked to the state of its insulation, which can be threatened by the partial discharges (PDs) activity. This phenomenon is localized in defects created within insulation during the manufacture process and the cable installation. The cavity defect is among the most known defects within the insulating material filled with different gases and having various forms. Under electrical stress, the PDs occur and lead with time to a cable failure. The PDs simulation in cavity defect within cable insulation has became an important tool for a complementary understanding of the experimental task. The plasma model has been considered in last decade as an alternative to describe physically and chemically the PDs mechanism versus the other models such as the capacitance, conductance model. Using plasma model our work aims to simulate the PDs in cavity defect within cable insulation by showing the parameters influence such as the type of gas contained in the cavity, the voltage magnitude and frequency imposed on the insulation on their occurrence through its occurrence mechanisms. This helps to assess the PDs severity on the insulation system to carry out its diagnosis and therefore to have an effective reliability of cable.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/166378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/166378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Parameters that influence the partial discharges occurrence in cavity defect within electrical cable insulation
The electrical cable reliability is largely linked to the state of its insulation, which can be threatened by the partial discharges (PDs) activity. This phenomenon is localized in defects created within insulation during the manufacture process and the cable installation. The cavity defect is among the most known defects within the insulating material filled with different gases and having various forms. Under electrical stress, the PDs occur and lead with time to a cable failure. The PDs simulation in cavity defect within cable insulation has became an important tool for a complementary understanding of the experimental task. The plasma model has been considered in last decade as an alternative to describe physically and chemically the PDs mechanism versus the other models such as the capacitance, conductance model. Using plasma model our work aims to simulate the PDs in cavity defect within cable insulation by showing the parameters influence such as the type of gas contained in the cavity, the voltage magnitude and frequency imposed on the insulation on their occurrence through its occurrence mechanisms. This helps to assess the PDs severity on the insulation system to carry out its diagnosis and therefore to have an effective reliability of cable.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.