Nikolaj Krog Larsen, Kristian B.R Kristensen, M. Siggaard-Andersen, C. Heilmann-Clausen, K. Kjær
{"title":"丹麦古近系矿床的X射线荧光指纹","authors":"Nikolaj Krog Larsen, Kristian B.R Kristensen, M. Siggaard-Andersen, C. Heilmann-Clausen, K. Kjær","doi":"10.34194/geusb.v53.8330","DOIUrl":null,"url":null,"abstract":"In this study, we test if cost-efficient X-ray fluorescence (XRF) analyses can be used to fingerprint Palaeogene clay and marl deposits in Denmark. A total of 67 samples from key sites in Denmark have been analysed. Our preliminary results indicate that it is possible locally within 10–30 km to distinguish between most of the Palaeogene units, but on a regional scale across Denmark, the units are not unique, and this probably reflects variations in clay mineralogy, grain size and calcareous content. Accordingly, we suggest that a comprehensive reference database is now needed if the full potential of the method is to be utilised, and this will ultimately result in more reliable geological models.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-ray fluorescence (XRF) fingerprinting of Palaeogene deposits in Denmark\",\"authors\":\"Nikolaj Krog Larsen, Kristian B.R Kristensen, M. Siggaard-Andersen, C. Heilmann-Clausen, K. Kjær\",\"doi\":\"10.34194/geusb.v53.8330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we test if cost-efficient X-ray fluorescence (XRF) analyses can be used to fingerprint Palaeogene clay and marl deposits in Denmark. A total of 67 samples from key sites in Denmark have been analysed. Our preliminary results indicate that it is possible locally within 10–30 km to distinguish between most of the Palaeogene units, but on a regional scale across Denmark, the units are not unique, and this probably reflects variations in clay mineralogy, grain size and calcareous content. Accordingly, we suggest that a comprehensive reference database is now needed if the full potential of the method is to be utilised, and this will ultimately result in more reliable geological models.\",\"PeriodicalId\":48475,\"journal\":{\"name\":\"Geus Bulletin\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geus Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.34194/geusb.v53.8330\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geus Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.34194/geusb.v53.8330","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
X-ray fluorescence (XRF) fingerprinting of Palaeogene deposits in Denmark
In this study, we test if cost-efficient X-ray fluorescence (XRF) analyses can be used to fingerprint Palaeogene clay and marl deposits in Denmark. A total of 67 samples from key sites in Denmark have been analysed. Our preliminary results indicate that it is possible locally within 10–30 km to distinguish between most of the Palaeogene units, but on a regional scale across Denmark, the units are not unique, and this probably reflects variations in clay mineralogy, grain size and calcareous content. Accordingly, we suggest that a comprehensive reference database is now needed if the full potential of the method is to be utilised, and this will ultimately result in more reliable geological models.