{"title":"投射到前扣带皮层的闭突神经元的功能特性、拓扑结构和性二态性","authors":"Zach Chia, G. Silberberg, G. Augustine","doi":"10.1080/20023294.2017.1357412","DOIUrl":null,"url":null,"abstract":"ABSTRACT Objective: To define the physiological properties of neurons projecting from the claustrum to the anterior cingulate cortex (ACC). Design: To identify the claustrum in live slices, we used a transgenic mouse line that expresses yellow fluorescent protein (YFP)-tagged Volvox channelrhodopsin-1 at high levels within the claustrum. Claustrum cells projecting to the ACC were identified by retrograde labelling. Whole-cell patch-clamp recordings from labelled claustrum neurons were used to characterize the intrinsic electrical properties of these neurons. Cells were classified according to their intrinsic electrical properties, based on a previous classification scheme. Results: Labelled neurons were found in the claustrum but not the insular cortex. Four types of ACC-projecting neurons were identified based on action potential adaptation and waveform: strongly adapting (SA) cell types 2, 3 and 4, and moderately adapting (MA) cell type 2. Labelled cells were predominantly SA4 in the anterior (44%) and posterior (63%) claustrum, while MA2 predominated (77%) in the central claustrum. The male anterior claustrum showed a bias toward SA3 cells (53%) while the female anterior claustrum showed a bias toward SA3 cells (76%). Conclusions: There is ipsilateral dominance for ACC-projecting claustrum neurons, with the intrinsic properties of these neurons varying along the anterior–posterior axis. Sexual dimorphism was observed in ACC-projecting claustrum cells. Our results are consistent with the hypothesis that the claustrum serves as a link between the insular cortex and the ACC.","PeriodicalId":92763,"journal":{"name":"Claustrum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20023294.2017.1357412","citationCount":"13","resultStr":"{\"title\":\"Functional properties, topological organization and sexual dimorphism of claustrum neurons projecting to anterior cingulate cortex\",\"authors\":\"Zach Chia, G. Silberberg, G. Augustine\",\"doi\":\"10.1080/20023294.2017.1357412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Objective: To define the physiological properties of neurons projecting from the claustrum to the anterior cingulate cortex (ACC). Design: To identify the claustrum in live slices, we used a transgenic mouse line that expresses yellow fluorescent protein (YFP)-tagged Volvox channelrhodopsin-1 at high levels within the claustrum. Claustrum cells projecting to the ACC were identified by retrograde labelling. Whole-cell patch-clamp recordings from labelled claustrum neurons were used to characterize the intrinsic electrical properties of these neurons. Cells were classified according to their intrinsic electrical properties, based on a previous classification scheme. Results: Labelled neurons were found in the claustrum but not the insular cortex. Four types of ACC-projecting neurons were identified based on action potential adaptation and waveform: strongly adapting (SA) cell types 2, 3 and 4, and moderately adapting (MA) cell type 2. Labelled cells were predominantly SA4 in the anterior (44%) and posterior (63%) claustrum, while MA2 predominated (77%) in the central claustrum. The male anterior claustrum showed a bias toward SA3 cells (53%) while the female anterior claustrum showed a bias toward SA3 cells (76%). Conclusions: There is ipsilateral dominance for ACC-projecting claustrum neurons, with the intrinsic properties of these neurons varying along the anterior–posterior axis. Sexual dimorphism was observed in ACC-projecting claustrum cells. Our results are consistent with the hypothesis that the claustrum serves as a link between the insular cortex and the ACC.\",\"PeriodicalId\":92763,\"journal\":{\"name\":\"Claustrum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/20023294.2017.1357412\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Claustrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20023294.2017.1357412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Claustrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20023294.2017.1357412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional properties, topological organization and sexual dimorphism of claustrum neurons projecting to anterior cingulate cortex
ABSTRACT Objective: To define the physiological properties of neurons projecting from the claustrum to the anterior cingulate cortex (ACC). Design: To identify the claustrum in live slices, we used a transgenic mouse line that expresses yellow fluorescent protein (YFP)-tagged Volvox channelrhodopsin-1 at high levels within the claustrum. Claustrum cells projecting to the ACC were identified by retrograde labelling. Whole-cell patch-clamp recordings from labelled claustrum neurons were used to characterize the intrinsic electrical properties of these neurons. Cells were classified according to their intrinsic electrical properties, based on a previous classification scheme. Results: Labelled neurons were found in the claustrum but not the insular cortex. Four types of ACC-projecting neurons were identified based on action potential adaptation and waveform: strongly adapting (SA) cell types 2, 3 and 4, and moderately adapting (MA) cell type 2. Labelled cells were predominantly SA4 in the anterior (44%) and posterior (63%) claustrum, while MA2 predominated (77%) in the central claustrum. The male anterior claustrum showed a bias toward SA3 cells (53%) while the female anterior claustrum showed a bias toward SA3 cells (76%). Conclusions: There is ipsilateral dominance for ACC-projecting claustrum neurons, with the intrinsic properties of these neurons varying along the anterior–posterior axis. Sexual dimorphism was observed in ACC-projecting claustrum cells. Our results are consistent with the hypothesis that the claustrum serves as a link between the insular cortex and the ACC.