{"title":"耦合分数阶积分微分方程的可控性","authors":"H. Waheed, A. Zada, R. Rizwan, I. Popa","doi":"10.1515/ijnsns-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we examine a coupled system of fractional integrodifferential equations of Liouville–Caputo form with instantaneous impulsive conditions in a Banach space. We obtain the existence and uniqueness results by applying the theory of fixed point theorems. In a similar manner, we discuss Hyers–Ulam stability and controllability. We also present an example to show the validity of the obtained results.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Controllability of coupled fractional integrodifferential equations\",\"authors\":\"H. Waheed, A. Zada, R. Rizwan, I. Popa\",\"doi\":\"10.1515/ijnsns-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we examine a coupled system of fractional integrodifferential equations of Liouville–Caputo form with instantaneous impulsive conditions in a Banach space. We obtain the existence and uniqueness results by applying the theory of fixed point theorems. In a similar manner, we discuss Hyers–Ulam stability and controllability. We also present an example to show the validity of the obtained results.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2022-0015\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Controllability of coupled fractional integrodifferential equations
Abstract In this article, we examine a coupled system of fractional integrodifferential equations of Liouville–Caputo form with instantaneous impulsive conditions in a Banach space. We obtain the existence and uniqueness results by applying the theory of fixed point theorems. In a similar manner, we discuss Hyers–Ulam stability and controllability. We also present an example to show the validity of the obtained results.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.