{"title":"高效薄层色谱(HPTLC)同时测定片剂中对乙酰氨基酚、咖啡因、氯苯那敏和苯肾上腺素的方法建立与验证","authors":"Almas Arage, T. Layloff, A. Hymete, A. Ashenef","doi":"10.1556/1326.2022.01028","DOIUrl":null,"url":null,"abstract":"\n A rapid, selective, and precise high performance thin layer chromatographic method was developed and validated for the simultaneous analysis of paracetamol, caffeine, phenylephrine and chlorpheniramine in tablets. The chromatographic analysis was carried out on glass plates pre-coated with silica gel 60 F254 as a stationary phase. The optimized mobile phase was methanol : n-butanol : toluene : acetic acid (8:6:4:0.2 v/v). TLC chamber of 10 × 20 cm was used with saturation time of 15 min. The retardation factor (RF) for chlorpheniramine, phenylephrine, caffeine and paracetamol was found to be 0.15 ± 0.02, 0.29 ± 0.02, 0.50 ± 0.02, 0.68 ± 0.02 respectively. Detection was carried out at 212 nm. Validation study was done following ICH Q2 (R1) guideline. The regression data for the calibration plots showed good linear relationship with R\n 2 = 0.997 over the concentration range of 300–1,500 ng band−1 for caffeine, R\n 2 = 0.996 over the concentration range of 100–500 ng band−1 for phenylephrine, R\n 2 = 0.996 over the concentration range of 200–600 ng band−1 for chlorpheniramine, R\n 2 = 0.998 over the concentration range of 400–2,400 ng band−1 for paracetamol. The method was validated for precision, accuracy and recovery. Minimum detectable amounts were found to be 304.9 ng band−1, 87.88 ng band−1, 117.18 ng band−1 and 143.06 ng band−1 for caffeine, phenylephrine, chlorpheniramine, and paracetamol respectively while the limit of quantification was found to be 923.95 ng band−1, 266.32 ng band−1, 355.11 ng band−1, and 433.53 ng band−1 in the same order. The method was successfully applied to analyze two marketed tablets in a selective and reproducible manner.","PeriodicalId":7130,"journal":{"name":"Acta Chromatographica","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High performance thin layer chromatography (HPTLC) method development and validation for the simultaneous determination of paracetamol, caffeine, chlorpheniramine and phenylepherine in tablet formulation\",\"authors\":\"Almas Arage, T. Layloff, A. Hymete, A. Ashenef\",\"doi\":\"10.1556/1326.2022.01028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A rapid, selective, and precise high performance thin layer chromatographic method was developed and validated for the simultaneous analysis of paracetamol, caffeine, phenylephrine and chlorpheniramine in tablets. The chromatographic analysis was carried out on glass plates pre-coated with silica gel 60 F254 as a stationary phase. The optimized mobile phase was methanol : n-butanol : toluene : acetic acid (8:6:4:0.2 v/v). TLC chamber of 10 × 20 cm was used with saturation time of 15 min. The retardation factor (RF) for chlorpheniramine, phenylephrine, caffeine and paracetamol was found to be 0.15 ± 0.02, 0.29 ± 0.02, 0.50 ± 0.02, 0.68 ± 0.02 respectively. Detection was carried out at 212 nm. Validation study was done following ICH Q2 (R1) guideline. The regression data for the calibration plots showed good linear relationship with R\\n 2 = 0.997 over the concentration range of 300–1,500 ng band−1 for caffeine, R\\n 2 = 0.996 over the concentration range of 100–500 ng band−1 for phenylephrine, R\\n 2 = 0.996 over the concentration range of 200–600 ng band−1 for chlorpheniramine, R\\n 2 = 0.998 over the concentration range of 400–2,400 ng band−1 for paracetamol. The method was validated for precision, accuracy and recovery. Minimum detectable amounts were found to be 304.9 ng band−1, 87.88 ng band−1, 117.18 ng band−1 and 143.06 ng band−1 for caffeine, phenylephrine, chlorpheniramine, and paracetamol respectively while the limit of quantification was found to be 923.95 ng band−1, 266.32 ng band−1, 355.11 ng band−1, and 433.53 ng band−1 in the same order. The method was successfully applied to analyze two marketed tablets in a selective and reproducible manner.\",\"PeriodicalId\":7130,\"journal\":{\"name\":\"Acta Chromatographica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chromatographica\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1556/1326.2022.01028\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chromatographica","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1556/1326.2022.01028","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
High performance thin layer chromatography (HPTLC) method development and validation for the simultaneous determination of paracetamol, caffeine, chlorpheniramine and phenylepherine in tablet formulation
A rapid, selective, and precise high performance thin layer chromatographic method was developed and validated for the simultaneous analysis of paracetamol, caffeine, phenylephrine and chlorpheniramine in tablets. The chromatographic analysis was carried out on glass plates pre-coated with silica gel 60 F254 as a stationary phase. The optimized mobile phase was methanol : n-butanol : toluene : acetic acid (8:6:4:0.2 v/v). TLC chamber of 10 × 20 cm was used with saturation time of 15 min. The retardation factor (RF) for chlorpheniramine, phenylephrine, caffeine and paracetamol was found to be 0.15 ± 0.02, 0.29 ± 0.02, 0.50 ± 0.02, 0.68 ± 0.02 respectively. Detection was carried out at 212 nm. Validation study was done following ICH Q2 (R1) guideline. The regression data for the calibration plots showed good linear relationship with R
2 = 0.997 over the concentration range of 300–1,500 ng band−1 for caffeine, R
2 = 0.996 over the concentration range of 100–500 ng band−1 for phenylephrine, R
2 = 0.996 over the concentration range of 200–600 ng band−1 for chlorpheniramine, R
2 = 0.998 over the concentration range of 400–2,400 ng band−1 for paracetamol. The method was validated for precision, accuracy and recovery. Minimum detectable amounts were found to be 304.9 ng band−1, 87.88 ng band−1, 117.18 ng band−1 and 143.06 ng band−1 for caffeine, phenylephrine, chlorpheniramine, and paracetamol respectively while the limit of quantification was found to be 923.95 ng band−1, 266.32 ng band−1, 355.11 ng band−1, and 433.53 ng band−1 in the same order. The method was successfully applied to analyze two marketed tablets in a selective and reproducible manner.
期刊介绍:
Acta Chromatographica
Open Access
Acta Chromatographica publishes peer-reviewed scientific articles on every field of chromatography, including theory of chromatography; progress in synthesis and characterization of new stationary phases; chromatography of organic, inorganic and complex compounds; enantioseparation and chromatography of chiral compounds; applications of chromatography in biology, pharmacy, medicine, and food analysis; environmental applications of chromatography; analytical and physico-chemical aspects of sample preparation for chromatography; hyphenated and combined techniques; chemometrics and its applications in separation science.