基于x射线断层成像的弹性体复合材料中炭黑团聚体形态的数值聚类定量分析

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE
Jesbeer Kallungal, L. Chazeau, J. Chenal, J. Adrien, E. Maire, C. Barrès, B. Cantaloube, P. Heuillet
{"title":"基于x射线断层成像的弹性体复合材料中炭黑团聚体形态的数值聚类定量分析","authors":"Jesbeer Kallungal, L. Chazeau, J. Chenal, J. Adrien, E. Maire, C. Barrès, B. Cantaloube, P. Heuillet","doi":"10.5254/rct.22.77979","DOIUrl":null,"url":null,"abstract":"\n A novel methodology for characterizing the morphology distribution of filler agglomerates in elastomer composites is presented based on laboratory-sourced X-ray tomography. Various feature extraction methods (via, e.g., image-processing filters, segmentation) and selection tools (Spearman's rank correlation coefficient) combined with K-means unsupervised clustering algorithm were developed for identifying the distinct morphological classes in model materials (carbon-filled ethylene propylene diene monomer rubber). The interest of this methodology was demonstrated by precisely differentiating the materials compounded with different processing parameters. For instance, in this example, thanks to this analysis, it was found that introducing the filler before the elastomer in internal mixer tends to favor more structured agglomerates.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"QUANTITATIVE ANALYSIS OF CARBON BLACK AGGLOMERATE MORPHOLOGY IN ELASTOMER COMPOSITES BASED ON X-RAY TOMOGRAPHY BY MEANS OF NUMERICAL CLUSTERING\",\"authors\":\"Jesbeer Kallungal, L. Chazeau, J. Chenal, J. Adrien, E. Maire, C. Barrès, B. Cantaloube, P. Heuillet\",\"doi\":\"10.5254/rct.22.77979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel methodology for characterizing the morphology distribution of filler agglomerates in elastomer composites is presented based on laboratory-sourced X-ray tomography. Various feature extraction methods (via, e.g., image-processing filters, segmentation) and selection tools (Spearman's rank correlation coefficient) combined with K-means unsupervised clustering algorithm were developed for identifying the distinct morphological classes in model materials (carbon-filled ethylene propylene diene monomer rubber). The interest of this methodology was demonstrated by precisely differentiating the materials compounded with different processing parameters. For instance, in this example, thanks to this analysis, it was found that introducing the filler before the elastomer in internal mixer tends to favor more structured agglomerates.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.22.77979\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.22.77979","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

基于实验室来源的x射线断层扫描,提出了一种表征弹性体复合材料中填充团块形貌分布的新方法。开发了各种特征提取方法(通过图像处理滤波器、分割)和选择工具(Spearman等级相关系数),结合K-means无监督聚类算法,用于识别模型材料(碳填充乙丙二烯单体橡胶)中不同的形态类别。通过精确区分具有不同加工参数的复合材料,证明了该方法的趣味性。例如,在这个例子中,由于这个分析,发现在内混炼器中弹性体之前引入填料倾向于更有结构的团聚体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QUANTITATIVE ANALYSIS OF CARBON BLACK AGGLOMERATE MORPHOLOGY IN ELASTOMER COMPOSITES BASED ON X-RAY TOMOGRAPHY BY MEANS OF NUMERICAL CLUSTERING
A novel methodology for characterizing the morphology distribution of filler agglomerates in elastomer composites is presented based on laboratory-sourced X-ray tomography. Various feature extraction methods (via, e.g., image-processing filters, segmentation) and selection tools (Spearman's rank correlation coefficient) combined with K-means unsupervised clustering algorithm were developed for identifying the distinct morphological classes in model materials (carbon-filled ethylene propylene diene monomer rubber). The interest of this methodology was demonstrated by precisely differentiating the materials compounded with different processing parameters. For instance, in this example, thanks to this analysis, it was found that introducing the filler before the elastomer in internal mixer tends to favor more structured agglomerates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信