Lei Qiao , Xina Dou , Xiaofan Song , Jiajing Chang , Xiaonan Zeng , Lixu Zhu , Hongbo Yi , Chunlan Xu
{"title":"用生物源性纳米硒替代饲粮亚硒酸钠可改善早期断奶仔猪的生长性能和肠道健康","authors":"Lei Qiao , Xina Dou , Xiaofan Song , Jiajing Chang , Xiaonan Zeng , Lixu Zhu , Hongbo Yi , Chunlan Xu","doi":"10.1016/j.aninu.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na<sub>2</sub>SeO<sub>3</sub>). Here, we investigated the effects of replacing dietary Na<sub>2</sub>SeO<sub>3</sub> with SeNPs synthesized by <em>Lactobacillus casei</em> ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (<em>Duroc</em> × <em>Landrace</em> × <em>Large Yorkshire</em>) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na<sub>2</sub>SeO<sub>3</sub>) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (<em>P</em> = 0.022) and average daily feed intake (<em>P</em> = 0.033), reduced (<em>P</em> = 0.056) the diarrhea incidence, and improved (<em>P</em> = 0.013) the feed conversion ratio compared with Na<sub>2</sub>SeO<sub>3</sub>. Additionally, SeNPs increased jejunal microvilli height (<em>P</em> = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (<em>P</em> < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (<em>P</em> < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (<em>P</em> < 0.05) the abundance of <em>Holdemanella</em> and the levels of acetate and propionate. Correlation analysis suggested that <em>Holdemanella</em> was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na<sub>2</sub>SeO<sub>3</sub> with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"15 ","pages":"Pages 99-113"},"PeriodicalIF":6.3000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405654523001002/pdfft?md5=3ccedc70d5efb7c521c6f187953c9fb7&pid=1-s2.0-S2405654523001002-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Replacing dietary sodium selenite with biogenic selenium nanoparticles improves the growth performance and gut health of early-weaned piglets\",\"authors\":\"Lei Qiao , Xina Dou , Xiaofan Song , Jiajing Chang , Xiaonan Zeng , Lixu Zhu , Hongbo Yi , Chunlan Xu\",\"doi\":\"10.1016/j.aninu.2023.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na<sub>2</sub>SeO<sub>3</sub>). Here, we investigated the effects of replacing dietary Na<sub>2</sub>SeO<sub>3</sub> with SeNPs synthesized by <em>Lactobacillus casei</em> ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (<em>Duroc</em> × <em>Landrace</em> × <em>Large Yorkshire</em>) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na<sub>2</sub>SeO<sub>3</sub>) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (<em>P</em> = 0.022) and average daily feed intake (<em>P</em> = 0.033), reduced (<em>P</em> = 0.056) the diarrhea incidence, and improved (<em>P</em> = 0.013) the feed conversion ratio compared with Na<sub>2</sub>SeO<sub>3</sub>. Additionally, SeNPs increased jejunal microvilli height (<em>P</em> = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (<em>P</em> < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (<em>P</em> < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (<em>P</em> < 0.05) the abundance of <em>Holdemanella</em> and the levels of acetate and propionate. Correlation analysis suggested that <em>Holdemanella</em> was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na<sub>2</sub>SeO<sub>3</sub> with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"15 \",\"pages\":\"Pages 99-113\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405654523001002/pdfft?md5=3ccedc70d5efb7c521c6f187953c9fb7&pid=1-s2.0-S2405654523001002-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654523001002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523001002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Replacing dietary sodium selenite with biogenic selenium nanoparticles improves the growth performance and gut health of early-weaned piglets
Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.