构建国家安全机构可用的恶意软件分类器

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
David Esteban Useche-Peláez, Daniel Díaz-López, Daniela Sepúlveda-Alzate, Diego Edison Cabuya-Padilla
{"title":"构建国家安全机构可用的恶意软件分类器","authors":"David Esteban Useche-Peláez, Daniel Díaz-López, Daniela Sepúlveda-Alzate, Diego Edison Cabuya-Padilla","doi":"10.15332/ITECKNE.V15I2.2072","DOIUrl":null,"url":null,"abstract":"Sandboxing has been used regularly to analyze software samples and determine if these contain suspicious properties or behaviors. Even if sandboxing is a powerful technique to perform malware analysis, it requires that a malware analyst performs a rigorous analysis of the results to determine the nature of the sample: goodware or malware. This paper proposes two machine learning models able to classify samples based on signatures and permissions obtained through Cuckoo sandbox, Androguard and VirusTotal. The developed models are also tested obtaining an acceptable percentage of correctly classified samples, being in this way useful tools for a malware analyst. A proposal of architecture for an IoT sentinel that uses one of the developed machine learning model is also showed. Finally, different approaches, perspectives, and challenges about the use of sandboxing and machine learning by security teams in State security agencies are also shared.","PeriodicalId":53892,"journal":{"name":"Revista Iteckne","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Building malware classificators usable by State security agencies\",\"authors\":\"David Esteban Useche-Peláez, Daniel Díaz-López, Daniela Sepúlveda-Alzate, Diego Edison Cabuya-Padilla\",\"doi\":\"10.15332/ITECKNE.V15I2.2072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sandboxing has been used regularly to analyze software samples and determine if these contain suspicious properties or behaviors. Even if sandboxing is a powerful technique to perform malware analysis, it requires that a malware analyst performs a rigorous analysis of the results to determine the nature of the sample: goodware or malware. This paper proposes two machine learning models able to classify samples based on signatures and permissions obtained through Cuckoo sandbox, Androguard and VirusTotal. The developed models are also tested obtaining an acceptable percentage of correctly classified samples, being in this way useful tools for a malware analyst. A proposal of architecture for an IoT sentinel that uses one of the developed machine learning model is also showed. Finally, different approaches, perspectives, and challenges about the use of sandboxing and machine learning by security teams in State security agencies are also shared.\",\"PeriodicalId\":53892,\"journal\":{\"name\":\"Revista Iteckne\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Iteckne\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15332/ITECKNE.V15I2.2072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iteckne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15332/ITECKNE.V15I2.2072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

沙盒已被定期用于分析软件样本,并确定这些样本是否包含可疑属性或行为。即使沙盒是一种执行恶意软件分析的强大技术,它也需要恶意软件分析师对结果进行严格分析,以确定样本的性质:恶意软件还是恶意软件。本文提出了两个机器学习模型,即Androguard和VirusTotal,它们能够根据通过杜鹃沙盒获得的签名和权限对样本进行分类。开发的模型也经过了测试,获得了可接受的正确分类样本百分比,这对恶意软件分析师来说是有用的工具。还展示了使用所开发的机器学习模型之一的物联网哨兵的架构建议。最后,还分享了国家安全机构安全团队使用沙箱和机器学习的不同方法、观点和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building malware classificators usable by State security agencies
Sandboxing has been used regularly to analyze software samples and determine if these contain suspicious properties or behaviors. Even if sandboxing is a powerful technique to perform malware analysis, it requires that a malware analyst performs a rigorous analysis of the results to determine the nature of the sample: goodware or malware. This paper proposes two machine learning models able to classify samples based on signatures and permissions obtained through Cuckoo sandbox, Androguard and VirusTotal. The developed models are also tested obtaining an acceptable percentage of correctly classified samples, being in this way useful tools for a malware analyst. A proposal of architecture for an IoT sentinel that uses one of the developed machine learning model is also showed. Finally, different approaches, perspectives, and challenges about the use of sandboxing and machine learning by security teams in State security agencies are also shared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Iteckne
Revista Iteckne ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
3
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信