条件Fleming-Viot和Dawson-Watanabe扩散的平滑分布

IF 1.5 2区 数学 Q2 STATISTICS & PROBABILITY
Bernoulli Pub Date : 2022-04-27 DOI:10.3150/22-bej1504
Filippo Ascolani, A. Lijoi, M. Ruggiero
{"title":"条件Fleming-Viot和Dawson-Watanabe扩散的平滑分布","authors":"Filippo Ascolani, A. Lijoi, M. Ruggiero","doi":"10.3150/22-bej1504","DOIUrl":null,"url":null,"abstract":"We study the distribution of the unobserved states of two measure-valued diffusions of Fleming-Viot and Dawson-Watanabe type, conditional on observations from the underlying populations collected at past, present and future times. If seen as nonparametric hidden Markov models, this amounts to finding the smoothing distributions of these processes, which we show can be explicitly described in recursive form as finite mixtures of laws of Dirichlet and gamma random measures respectively. We characterize the time-dependent weights of these mixtures, accounting for potentially different time intervals between data collection times, and fully describe the implications of assuming a discrete or a nonatomic distribution for the underlying process that drives mutations. In particular, we show that with a nonatomic mutation offspring distribution, the inference automatically upweights mixture components that carry, as atoms, observed types shared at different collection times. The predictive distributions for further samples from the population conditional on the data are also identified and shown to be mixtures of generalized Polya urns, conditionally on a latent variable in the Dawson-Watanabe case.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smoothing distributions for conditional Fleming–Viot and Dawson–Watanabe diffusions\",\"authors\":\"Filippo Ascolani, A. Lijoi, M. Ruggiero\",\"doi\":\"10.3150/22-bej1504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the distribution of the unobserved states of two measure-valued diffusions of Fleming-Viot and Dawson-Watanabe type, conditional on observations from the underlying populations collected at past, present and future times. If seen as nonparametric hidden Markov models, this amounts to finding the smoothing distributions of these processes, which we show can be explicitly described in recursive form as finite mixtures of laws of Dirichlet and gamma random measures respectively. We characterize the time-dependent weights of these mixtures, accounting for potentially different time intervals between data collection times, and fully describe the implications of assuming a discrete or a nonatomic distribution for the underlying process that drives mutations. In particular, we show that with a nonatomic mutation offspring distribution, the inference automatically upweights mixture components that carry, as atoms, observed types shared at different collection times. The predictive distributions for further samples from the population conditional on the data are also identified and shown to be mixtures of generalized Polya urns, conditionally on a latent variable in the Dawson-Watanabe case.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/22-bej1504\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1504","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了Fleming-Viot和Dawson-Watanabe两种测量值扩散的未观测状态分布,条件是在过去、现在和未来时间收集的潜在种群的观测。如果将其视为非参数隐马尔可夫模型,这相当于找到这些过程的平滑分布,我们表明这些过程可以分别以递归形式显式描述为狄利克雷定律和伽马随机测度的有限混合。我们描述了这些混合物的时间相关权重,考虑了数据收集时间之间潜在的不同时间间隔,并充分描述了假设驱动突变的潜在过程的离散或非原子分布的含义。特别是,我们表明,对于非原子突变后代分布,推理自动增加混合成分的权重,这些混合成分作为原子,在不同的收集时间共享观察到的类型。基于数据的进一步样本的预测分布也被确定并显示为广义Polya瓮的混合物,条件是基于Dawson-Watanabe案例中的潜在变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing distributions for conditional Fleming–Viot and Dawson–Watanabe diffusions
We study the distribution of the unobserved states of two measure-valued diffusions of Fleming-Viot and Dawson-Watanabe type, conditional on observations from the underlying populations collected at past, present and future times. If seen as nonparametric hidden Markov models, this amounts to finding the smoothing distributions of these processes, which we show can be explicitly described in recursive form as finite mixtures of laws of Dirichlet and gamma random measures respectively. We characterize the time-dependent weights of these mixtures, accounting for potentially different time intervals between data collection times, and fully describe the implications of assuming a discrete or a nonatomic distribution for the underlying process that drives mutations. In particular, we show that with a nonatomic mutation offspring distribution, the inference automatically upweights mixture components that carry, as atoms, observed types shared at different collection times. The predictive distributions for further samples from the population conditional on the data are also identified and shown to be mixtures of generalized Polya urns, conditionally on a latent variable in the Dawson-Watanabe case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信